Suppr超能文献

用于光学参考腔的大时间常数热屏蔽的设计验证

Design verification of large time constant thermal shields for optical reference cavities.

作者信息

Zhang J, Wu W, Shi X H, Zeng X Y, Deng K, Lu Z H

机构信息

MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Rev Sci Instrum. 2016 Feb;87(2):023104. doi: 10.1063/1.4941718.

Abstract

In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

摘要

为了在超稳激光器中实现高频稳定性,法布里-珀罗参考腔应置于具有大热时间常数的真空腔内,以降低对外部温度波动的敏感度。目前,真空腔热时间常数的确定要么基于理论计算,要么基于耗时的实验。第一种方法仅适用于简单系统,而第二种方法需要花费大量时间来试验不同的设计。为克服这些限制,我们基于完整的真空腔模型,利用有限元分析(FEA)进行热时间常数模拟,并通过实测时间常数验证结果。我们使用超稳激光系统和频率梳测量热时间常数。精确测量光学参考腔的热膨胀系数,以降低时间常数的测量误差。模拟结果与实验结果吻合得非常好。基于此,我们利用FEA模拟了几个简化设计模型,以在室温下获得更大的真空热时间常数,同时考虑了真空压力、屏蔽层和支撑结构。我们采用田口方法进行屏蔽层优化,并证明与层厚度和层间距相比,层材料和层数对热时间常数的贡献更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验