Suppr超能文献

通过异源三聚体G蛋白的神经递质信号传导:秀丽隐杆线虫研究的见解

Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans.

作者信息

Koelle Michael R

机构信息

Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA.

出版信息

WormBook. 2018 Dec 11;2018:1-52. doi: 10.1895/wormbook.1.75.2.

Abstract

Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.

摘要

神经递质通过G蛋白偶联受体(GPCRs)发出信号,以调节神经元和肌肉的活动。秀丽隐杆线虫有大约150个G蛋白偶联神经肽受体同源物以及另外28个用于小分子神经递质的GPCRs。秀丽隐杆线虫的遗传学研究表明,神经递质从其释放位点扩散到远处,激活远处细胞上的GPCRs。单个受体类型在有限数量的细胞上表达,因此可以对单个神经回路和行为提供非常特异性的调节。G蛋白偶联神经递质受体主要通过由Gα亚基Gαo、Gαq和Gαs定义的三种异源三聚体G蛋白发出信号。所有神经元以及一些肌肉中都存在这些Gα蛋白中的每一种。Gαo和Gαq信号分别抑制和激活神经递质释放。与Gαq信号一样,Gαs信号促进神经递质释放。Gαq和Gαs下游信号传导机制的许多细节已经阐明,并且与它们的哺乳动物直系同源物的细节一致。Gαo下游信号传导机制的细节仍然是个谜。秀丽隐杆线虫的正向遗传学筛选已经确定了神经G蛋白信号传导机制的新分子成分,包括抑制信号传导的G蛋白信号调节剂(RGS蛋白)、一种新的Gαq效应器(Trio RhoGEF结构域)以及神经元Gα信号传导所需的RIC-8蛋白。本文提出了一个模型,其中G蛋白汇总了作用于神经元的各种神经调质信号,以计算其适当的输出水平。

相似文献

2
A network of G-protein signaling pathways control neuronal activity in C. elegans.
Adv Genet. 2009;65:145-192. doi: 10.1016/S0065-2660(09)65004-5.
5
Heterotrimeric G proteins in C. elegans.
WormBook. 2006 Oct 13:1-25. doi: 10.1895/wormbook.1.75.1.
9
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the Egg-Laying Circuit.
J Neurosci. 2020 Sep 23;40(39):7475-7488. doi: 10.1523/JNEUROSCI.1357-20.2020. Epub 2020 Aug 26.
10
Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα and Gα Activate the Egg-Laying Muscles.
J Neurosci. 2023 May 24;43(21):3789-3806. doi: 10.1523/JNEUROSCI.2301-22.2023. Epub 2023 Apr 13.

引用本文的文献

1
Decoding GNAO1 mutations using model system: past approaches and future prospectives.
Front Cell Neurosci. 2025 Jul 23;19:1633744. doi: 10.3389/fncel.2025.1633744. eCollection 2025.
2
Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory.
iScience. 2025 Mar 13;28(4):112215. doi: 10.1016/j.isci.2025.112215. eCollection 2025 Apr 18.
3
GNG5 is a novel regulator of Aβ42 production in Alzheimer's disease.
Cell Death Dis. 2024 Nov 11;15(11):815. doi: 10.1038/s41419-024-07218-z.
5
Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα and Gα Activate the Egg-Laying Muscles.
J Neurosci. 2023 May 24;43(21):3789-3806. doi: 10.1523/JNEUROSCI.2301-22.2023. Epub 2023 Apr 13.
6
8
9
Distribution and the evolutionary history of G-protein components in plant and algal lineages.
Plant Physiol. 2022 Jun 27;189(3):1519-1535. doi: 10.1093/plphys/kiac153.
10
rab-27 acts in an intestinal pathway to inhibit axon regeneration in C. elegans.
PLoS Genet. 2021 Nov 24;17(11):e1009877. doi: 10.1371/journal.pgen.1009877. eCollection 2021 Nov.

本文引用的文献

1
Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span.
Science. 2015 Dec 11;350(6266):1375-1378. doi: 10.1126/science.aac9257. Epub 2015 Nov 19.
2
Metabotropic GABA signalling modulates longevity in C. elegans.
Nat Commun. 2015 Nov 5;6:8828. doi: 10.1038/ncomms9828.
3
Measuring Food Intake and Nutrient Absorption in Caenorhabditis elegans.
Genetics. 2015 Jun;200(2):443-54. doi: 10.1534/genetics.115.175851. Epub 2015 Apr 21.
4
Introduction to the theme issue 'Cerebral cartography: a vision of its future'.
Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668). doi: 10.1098/rstb.2014.0163.
5
NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release.
J Neurosci. 2015 Jan 21;35(3):1038-42. doi: 10.1523/JNEUROSCI.2825-14.2015.
7
Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans.
PLoS One. 2014 Dec 23;9(12):e115985. doi: 10.1371/journal.pone.0115985. eCollection 2014.
8
Isolation of specific neurons from C. elegans larvae for gene expression profiling.
PLoS One. 2014 Nov 5;9(11):e112102. doi: 10.1371/journal.pone.0112102. eCollection 2014.
9
G Protein-coupled receptors: Multi-turnover GDP/GTP exchange catalysis on heterotrimeric G proteins.
Cell Logist. 2014 Jun 4;4:e29391. doi: 10.4161/cl.29391. eCollection 2014.
10
A conserved dopamine-cholecystokinin signaling pathway shapes context-dependent Caenorhabditis elegans behavior.
PLoS Genet. 2014 Aug 28;10(8):e1004584. doi: 10.1371/journal.pgen.1004584. eCollection 2014 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验