Nejad S Moosavi, Hosseini Hamid, Akiyama Hidenori, Tachibana Katsuro
1. Department of Anatomy, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;; 2. Bioelectrics Department, Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan.
2. Bioelectrics Department, Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555, Japan.
Theranostics. 2016 Feb 3;6(4):446-55. doi: 10.7150/thno.13518. eCollection 2016.
The conjunction of low intensity ultrasound and encapsulated microbubbles can alter the permeability of cell membrane, offering a promising theranostic technique for non-invasive gene/drug delivery. Despite its great potential, the biophysical mechanisms of the delivery at the cellular level remains poorly understood. Here, the first direct high-speed micro-photographic images of human lymphoma cell and microbubble interaction dynamics are provided in a completely free suspension environment without any boundary parameter defect. Our real-time images and theoretical analyses prove that the negative divergence side of the microbubble's dipole microstreaming locally pulls the cell membrane, causing transient local protrusion of 2.5 µm in the cell membrane. The linear oscillation of microbubble caused microstreaming well below the inertial cavitation threshold, and imposed 35.3 Pa shear stress on the membrane, promoting an area strain of 0.12%, less than the membrane critical areal strain to cause cell rupture. Positive transfected cells with pEGFP-N1 confirm that the interaction causes membrane poration without cell disruption. The results show that the overstretched cell membrane causes reparable submicron pore formation, providing primary evidence of low amplitude (0.12 MPa at 0.834 MHz) ultrasound sonoporation mechanism.
低强度超声与包裹的微泡相结合可改变细胞膜的通透性,为非侵入性基因/药物递送提供了一种很有前景的治疗诊断技术。尽管其潜力巨大,但在细胞水平上递送的生物物理机制仍知之甚少。在此,首次在完全无边界参数缺陷的自由悬浮环境中提供了人类淋巴瘤细胞与微泡相互作用动力学的直接高速显微摄影图像。我们的实时图像和理论分析证明,微泡偶极微流的负散度侧局部拉动细胞膜,导致细胞膜出现2.5μm的瞬时局部凸起。微泡的线性振荡引起远低于惯性空化阈值的微流,并在膜上施加35.3 Pa的剪应力,促进0.12%的面积应变,小于导致细胞破裂的膜临界面积应变。用pEGFP-N1进行阳性转染的细胞证实,这种相互作用导致膜形成小孔而不破坏细胞。结果表明过度拉伸的细胞膜会导致可修复的亚微米级孔隙形成,为低振幅(0.834 MHz时为0.12 MPa)超声穿孔机制提供了初步证据。