Padhi Bijaya K, Adhikari Atin, Satapathy Prakasini, Patra Alok K, Chandel Dinesh, Panigrahi Pinaki
Center for Environmental and Occupational Health, Asian Institute of Public Health, Bhubaneswar, India.
Department of Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA.
J Expo Sci Environ Epidemiol. 2017 Jan;27(1):112-117. doi: 10.1038/jes.2016.5. Epub 2016 Mar 9.
Recent studies have highlighted the presence of endotoxin in indoor air and its role in respiratory morbidities. Burning of household fuels including unprocessed wood and dried animal dung could be a major source of endotoxin in homes. We measured endotoxin levels in different size fractions of airborne particles (PM10, PM2.5, and PM1), and estimated the deposition of particle-bound endotoxin in the respiratory tract. The study was carried out in homes burning solid biomass fuel (n=35) and LPG (n=35). Sample filters were analyzed for endotoxin and organic carbon (OC) content. Household characteristics including temperature, relative humidity, and carbon dioxide levels were also recorded. Multivariate regression models were used to estimate the contributing factors for airborne endotoxin. Respiratory deposition doses were calculated using a computer-based model. We found a higher endotoxin concentration in PM2.5 fractions of the particle in both LPG (median: 110, interquartile range (IQR) 100-120 EU/m) and biomass (median: 350, IQR: 315-430 EU/m) burning homes. In the multivariate-adjusted model, burning of solid biomass fuel (β: 67; 95% CI: 10.5-124) emerged as the most significant predictor followed by OC (β: 4.7; 95% CI: 2.7-6.8), RH (β: 1.6; 95% CI: 0.76-2.4), and PM2.5 (β: 0.45; 95% CI: 0.11-0.78) for airborne endotoxin (P<0.05). We also observed an interaction between PM organic carbon content and household fuel in predicting the endotoxin levels. The model calculations showed that in biomass burning homes, total endotoxin deposition was higher among infants (59%) than in adult males (47%), of which at least 10% of inhaled endotoxin is deposited in the alveolar region of the lung. These results indicate that fine particles are significant contributors to the deposition of endotoxin in the alveolar region of the lung. Considering the paramount role of endotoxin exposure, and the source and timing of exposure on respiratory health, additional studies are warranted to guide evidence-based public health interventions.
近期研究强调了室内空气中内毒素的存在及其在呼吸道疾病中的作用。燃烧包括未加工木材和干动物粪便在内的家用燃料可能是家庭内毒素的主要来源。我们测量了空气传播颗粒不同粒径部分(PM10、PM2.5和PM1)中的内毒素水平,并估计了颗粒结合内毒素在呼吸道中的沉积情况。该研究在燃烧固体生物质燃料的家庭(n = 35)和使用液化石油气的家庭(n = 35)中进行。对样本过滤器进行内毒素和有机碳(OC)含量分析。还记录了包括温度、相对湿度和二氧化碳水平在内的家庭特征。使用多元回归模型估计空气传播内毒素的影响因素。使用基于计算机的模型计算呼吸道沉积剂量。我们发现,在使用液化石油气(中位数:110,四分位间距(IQR)100 - 120 EU/m)和生物质燃料(中位数:350,IQR:315 - 430 EU/m)的家庭中,PM2.5粒径部分的颗粒内毒素浓度更高。在多变量调整模型中,燃烧固体生物质燃料(β:67;95%置信区间:10.5 - 124)成为最显著的预测因素,其次是OC(β:4.7;95%置信区间:2.7 - 6.8)、相对湿度(β:1.6;95%置信区间:0.76 - 2.4)和PM2.5(β:0.45;95%置信区间:0.11 - 0.78)对空气传播内毒素的影响(P < 0.05)。我们还观察到在预测内毒素水平时,PM有机碳含量与家用燃料之间存在相互作用。模型计算表明,在燃烧生物质燃料的家庭中,婴儿的内毒素总沉积量(59%)高于成年男性(47%),其中至少10%吸入的内毒素沉积在肺部的肺泡区域。这些结果表明,细颗粒是肺部肺泡区域内毒素沉积的重要贡献者。考虑到内毒素暴露的首要作用以及暴露的来源和时间对呼吸道健康的影响,有必要进行更多研究以指导基于证据的公共卫生干预措施。