Gong Yudong, Sun Chunwen, Huang Qiu-an, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Chen Liquan
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China.
Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China.
Inorg Chem. 2016 Mar 21;55(6):3091-7. doi: 10.1021/acs.inorgchem.5b03002. Epub 2016 Mar 9.
Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.
Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ)在700-750°C的低温下作为固体氧化物燃料电池(SOFC)的阴极表现优异。通过与温度相关的中子粉末衍射(NPD)实验研究了这种性能的微观原因。在25-800°C的温度范围内,Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ)呈现出完美的立方结构(a = a0),在单个氧位点存在明显的氧缺陷,这种缺陷在SOFC的工作温度下会大幅增加。氧原子的各向异性热运动随温度显著上升,在800°C时达到B(eq)≈5 Å(2),其振动椭球体呈长形雪茄状,这表明当氧离子通过空位机制在结构中扩散时,八面体存在动态呼吸,从而意味着具有显著的离子迁移率,可将其描述为熔融氧亚晶格。具有La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ)电解质(厚度约300μm)支撑结构的测试电池,以纯H2为燃料、环境空气为氧化剂时,在700和750°C的温度下分别产生0.20和0.40 W cm(-2)的峰值功率密度。在750°C下测量的对称阴极燃料电池的电化学阻抗谱(EIS)随时间的演变表明,Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ)阴极具有优异的氧还原反应(ORR)催化活性和长期稳定性。Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ)的混合电子-离子传导特性是其作为氧还原催化剂表现良好的原因。