Wang Wujie, Nocka Laura M, Wiemann Brianne Z, Hinckley Daniel M, Mukerji Ishita, Starr Francis W
Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA.
Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
Sci Rep. 2016 Mar 14;6:22863. doi: 10.1038/srep22863.
Holliday junctions play a central role in genetic recombination, DNA repair and other cellular processes. We combine simulations and experiments to evaluate the ability of the 3SPN.2 model, a coarse-grained representation designed to mimic B-DNA, to predict the properties of DNA Holliday junctions. The model reproduces many experimentally determined aspects of junction structure and stability, including the temperature dependence of melting on salt concentration, the bias between open and stacked conformations, the relative populations of conformers at high salt concentration, and the inter-duplex angle (IDA) between arms. We also obtain a close correspondence between the junction structure evaluated by all-atom and coarse-grained simulations. We predict that, for salt concentrations at physiological and higher levels, the populations of the stacked conformers are independent of salt concentration, and directly observe proposed tetrahedral intermediate sub-states implicated in conformational transitions. Our findings demonstrate that the 3SPN.2 model captures junction properties that are inaccessible to all-atom studies, opening the possibility to simulate complex aspects of junction behavior.
霍利迪连接体在基因重组、DNA修复及其他细胞过程中发挥着核心作用。我们结合模拟和实验,以评估3SPN.2模型预测DNA霍利迪连接体特性的能力,该模型是一种旨在模拟B-DNA的粗粒度表示。该模型再现了连接体结构和稳定性的许多实验确定的方面,包括熔解对盐浓度的温度依赖性、开放构象与堆积构象之间的偏差、高盐浓度下构象异构体的相对丰度以及臂间双螺旋夹角(IDA)。我们还在全原子模拟和粗粒度模拟评估的连接体结构之间获得了紧密的对应关系。我们预测,对于生理水平及更高水平的盐浓度,堆积构象异构体的丰度与盐浓度无关,并直接观察到与构象转变有关的拟四面体中间亚状态。我们的研究结果表明,3SPN.2模型捕捉到了全原子研究无法获得的连接体特性,为模拟连接体行为的复杂方面开辟了可能性。