Suppr超能文献

个体面部识别的时间进程:ERP信号的模式分析。

The time course of individual face recognition: A pattern analysis of ERP signals.

作者信息

Nemrodov Dan, Niemeier Matthias, Mok Jenkin Ngo Yin, Nestor Adrian

机构信息

Department of Psychology at Scarborough, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada.

Department of Psychology at Scarborough, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada.

出版信息

Neuroimage. 2016 May 15;132:469-476. doi: 10.1016/j.neuroimage.2016.03.006. Epub 2016 Mar 10.

Abstract

An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition.

摘要

大量研究记录了人类视觉皮层中对面部进行神经处理的时间进程。然而,这项工作大部分集中在通过脑电图(EEG)数据的单变量分析得出的特定时间标志上,比如N170和N250成分。在这里,我们对与个体面部识别相关的事件相关电位(ERP)信号进行更广泛的评估,因为我们试图通过将模式分析应用于ERP数据来突破领先的理论和方法框架。具体而言,我们研究了在情绪表达变化情况下身份识别的时空特征。为此,我们将模式分类应用于ERP信号,包括在时间上针对任何单个电极,以及在空间上针对多个电极。我们的结果证实了传统ERP成分在面部处理中的重要性。但与此同时,这些结果也支持了这样一种观点,即面部识别的时间特征不能完全由这些成分来描述。首先,我们表明,早在刺激呈现后70毫秒,与不同面部身份相关的信号就能在这些成分的范围之外相互区分。其次,与传统ERP成分相关的电极,以及至关重要的是,那些与这些成分无关的电极,都显示出对刺激可辨别性有贡献。最后,发现基于ERP的模式辨别水平与受试者的识别准确率相关,这证实了这些方法对于连接大脑和行为数据的相关性。总之,当前的结果为神经面部处理的精细时间进程提供了新的线索,并展示了用于模式分析的新方法在研究视觉识别基本方面的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验