Suppr超能文献

机器人辅助部分肾切除术-病例组合对手术学习曲线影响的评估。

Robotic partial nephrectomy - Evaluation of the impact of case mix on the procedural learning curve.

机构信息

MRC Centre for Transplantation, King's College London, Urology Centre, Guy's Hospital, London UK.

MRC Centre for Transplantation, King's College London, Urology Centre, Guy's Hospital, London UK.

出版信息

Int J Surg. 2016 May;29:132-6. doi: 10.1016/j.ijsu.2016.03.001. Epub 2016 Mar 11.

Abstract

INTRODUCTION

Although Robotic partial nephrectomy (RPN) is an emerging technique for the management of small renal masses, this approach is technically demanding. To date, there is limited data on the nature and progression of the learning curve in RPN.

AIMS

To analyse the impact of case mix on the RPN LC and to model the learning curve.

METHODS

The records of the first 100 RPN performed, were analysed at our institution that were carried out by a single surgeon (B.C) (June 2010-December 2013). Cases were split based on their Preoperative Aspects and Dimensions Used for an Anatomical (PADUA) score into the following groups: 6-7, 8-9 and >10. Using a split group (20 patients in each group) and incremental analysis, the mean, the curve of best fit and R(2) values were calculated for each group.

RESULTS

Of 100 patients (F:28, M:72), the mean age was 56.4 ± 11.9 years. The number of patients in each PADUA score groups: 6-7, 8-9 and >10 were 61, 32 and 7 respectively. An increase in incidence of more complex cases throughout the cohort was evident within the 8-9 group (2010: 1 case, 2013: 16 cases). The learning process did not significantly affect the proxies used to assess surgical proficiency in this study (operative time and warm ischaemia time).

CONCLUSIONS

Case difficulty is an important parameter that should be considered when evaluating procedural learning curves. There is not one well fitting model that can be used to model the learning curve. With increasing experience, clinicians tend to operate on more difficult cases.

摘要

介绍

虽然机器人辅助部分肾切除术(RPN)是治疗小肾肿瘤的新兴技术,但该方法技术要求较高。迄今为止,关于 RPN 学习曲线的性质和进展的数据有限。

目的

分析病例组合对 RPN 学习曲线的影响,并建立学习曲线模型。

方法

我们分析了本机构中由一位外科医生(B.C.)完成的前 100 例 RPN 的记录,该手术于 2010 年 6 月至 2013 年 12 月进行。根据患者术前情况和解剖学方面的维度(PADUA)评分,将病例分为以下三组:6-7、8-9 和>10。使用分组分析(每组 20 例)和增量分析,计算每组的平均值、最佳拟合曲线和 R²值。

结果

在 100 例患者中(女性 28 例,男性 72 例),平均年龄为 56.4±11.9 岁。在每个 PADUA 评分组中,6-7、8-9 和>10 分的患者数量分别为 61、32 和 7 例。在 8-9 组中,随着时间推移,复杂病例的发生率明显增加(2010 年:1 例,2013 年:16 例)。在本研究中,手术时间和热缺血时间等评估手术熟练程度的替代指标并未受到学习过程的显著影响。

结论

病例难度是评估程序学习曲线时应考虑的一个重要参数。目前还没有一种能够很好地拟合学习曲线的模型。随着经验的增加,临床医生倾向于治疗更困难的病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验