Rocha Paulo Fábio F, Felix Leonardo B, Miranda de Sá Antonio Mauricio F L, Mendes Eduardo M A M
Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Av. PH Rolfs, SN, 36570-900 Viçosa, MG, Brazil; Programa de Pós-graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.
Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Av. PH Rolfs, SN, 36570-900 Viçosa, MG, Brazil.
J Neurosci Methods. 2016 May 1;264:113-118. doi: 10.1016/j.jneumeth.2016.03.005. Epub 2016 Mar 11.
Objective response detection techniques, such as magnitude square coherence, component synchrony measure, and the spectral F-test, have been used to automate the detection of evoked responses. The performance of these detectors depends on both the signal-to-noise ratio (SNR) and the length of the electroencephalogram (EEG) signal.
Recently, multivariate detectors were developed to increase the detection rate even in the case of a low signal-to-noise ratio or of short data records originated from EEG signals. In this context, an extension to the multivariate case of the spectral F-test detector is proposed.
The performance of this technique is assessed using Monte Carlo. As an example, EEG data from 12 subjects during photic stimulation is used to demonstrate the usefulness of the proposed detector.
COMPARISON WITH EXISTING METHOD(S): The multivariate method showed detection rates consistently higher than those ones when only one signal was used.
It is shown that the response detection in EEG signals with the multivariate technique was statistically significant if two or more EEG derivations were used.
客观反应检测技术,如幅值平方相干性、成分同步性测量和频谱F检验,已被用于自动检测诱发反应。这些检测器的性能取决于信噪比(SNR)和脑电图(EEG)信号的长度。
最近,开发了多变量检测器,即使在信噪比低或源自EEG信号的数据记录较短的情况下,也能提高检测率。在此背景下,提出了频谱F检验检测器多变量情况的扩展。
使用蒙特卡洛方法评估该技术的性能。例如,使用12名受试者在光刺激期间的EEG数据来证明所提出检测器的实用性。
多变量方法显示出的检测率始终高于仅使用一个信号时的检测率。
结果表明,如果使用两个或更多EEG导联,则采用多变量技术对EEG信号进行反应检测具有统计学意义。