Stark Julian, Rothe Thomas, Kieß Steffen, Simon Sven, Kienle Alwin
Institut für Lasertechnologien in der Medizin und Meßtechnik (ILM), Helmholtzstr. 12, 89081 Ulm, Germany.
Phys Med Biol. 2016 Apr 7;61(7):2749-61. doi: 10.1088/0031-9155/61/7/2749. Epub 2016 Mar 15.
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
使用二维角向和光谱分辨散射显微镜对单细胞细胞核进行了研究。我们表明,即使是对实验数据和理论数据进行定性比较,均匀球体的标准米氏模型也被证明是不够的。因此,采用了一种使用图形处理器单元和区域分解的加速时域有限差分方法来分析实验散射图案。将测量的细胞核建模为单个球体,其中包含不同大小和折射率的随机分布的球形内含物,代表核仁和染色质团块。考虑到大量内含物的核异质性,实验光谱和理论光谱之间产生了定性的一致性,并说明了核微观和纳米结构对散射图案的影响。