Suppr超能文献

深入了解伯氏疏螺旋体细菌增强子结合蛋白Rrp2的双重功能。

Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi.

作者信息

Yin Yanping, Yang Youyun, Xiang Xuwu, Wang Qian, Yang Zhang-Nv, Blevins Jon, Lou Yongliang, Yang X Frank

机构信息

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

J Bacteriol. 2016 Apr 28;198(10):1543-52. doi: 10.1128/JB.01010-15. Print 2016 May 15.

Abstract

UNLABELLED

It is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditional rrp2 mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ(54) activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression of rpoS is deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect on rpoS These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ(54), controlling an essential step of cell replication in B. burgdorferi

IMPORTANCE

Bacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ(54)-dependent gene transcription. This work demonstrates that the B. burgdorferi bEBP, Rrp2, has an additional function that is independent of σ(54), that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.

摘要

未标记

众所周知,RpoN-RpoS 西格玛因子(σ(54)-σ(S))级联在莱姆病病原体伯氏疏螺旋体的地方性传播周期中的差异基因表达中起关键作用。RpoN-RpoS 途径由应答调节因子/σ(54) 依赖性激活因子(也称为细菌增强子结合蛋白 [bEBP])Rrp2 激活。Rrp2 的一个独特特征是该激活因子对细胞复制至关重要,而 RpoN-RpoS 对细菌生长并非必需。Rrp2 如何控制细胞复制,这一独立于 RpoN-RpoS 的功能,仍有待阐明。在本研究中,通过构建一系列条件性 rrp2 突变菌株,我们证明了 Rrp2 的 N 端接收结构域是螺旋体生长所必需的。此外,Rrp2 N 端磷酸化位点的 D52A 点突变消除了细胞复制。Rrp2 中央结构域内的 ATP 酶基序突变不影响螺旋体复制,这表明 Rrp2 对 σ(54) 激活的磷酸化依赖性 ATP 酶活性对细胞生长并非必需。然而,Rrp2 C 端结构域的缺失或 C 端结构域内螺旋-转角-螺旋(HTH)DNA 结合基序的 16 个氨基酸截断消除了螺旋体复制。结果表明,rpoS 的组成型表达对疏螺旋体生长有害。我们表明,Rrp2 的必需性并非由于对 rpoS 的影响。这些数据表明,Rrp2 的磷酸化依赖性寡聚化和 DNA 结合可能作为一种阻遏物发挥作用,独立于 σ(54) 的激活,控制伯氏疏螺旋体细胞复制的一个关键步骤。

重要性

细菌增强子结合蛋白(bEBPs)是一类独特的转录激活因子,是 σ(54) 依赖性基因转录所特需的。这项工作表明,伯氏疏螺旋体 bEBP Rrp2 具有一项独立于 σ(54) 的额外功能,即其对螺旋体生长的必要性,并且这种功能依赖于其 N 端信号结构域和 C 端 DNA 结合结构域。这些发现扩展了我们对 bEBP 的认识,并为进一步研究 bEBP 这一新功能的潜在机制提供了基础。

相似文献

1
Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi.
J Bacteriol. 2016 Apr 28;198(10):1543-52. doi: 10.1128/JB.01010-15. Print 2016 May 15.
2
Rrp2, a prokaryotic enhancer-like binding protein, is essential for viability of Borrelia burgdorferi.
J Bacteriol. 2012 Jul;194(13):3336-42. doi: 10.1128/JB.00253-12. Epub 2012 Apr 27.
3
The putative Walker A and Walker B motifs of Rrp2 are required for the growth of Borrelia burgdorferi.
Mol Microbiol. 2017 Jan;103(1):86-98. doi: 10.1111/mmi.13545. Epub 2016 Oct 26.
4
Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi.
PLoS One. 2014 May 8;9(5):e96917. doi: 10.1371/journal.pone.0096917. eCollection 2014.
5
Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi.
PLoS Pathog. 2010 Sep 16;6(9):e1001104. doi: 10.1371/journal.ppat.1001104.
6
Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi.
Infect Immun. 2008 Sep;76(9):3844-53. doi: 10.1128/IAI.00467-08. Epub 2008 Jun 23.
7
Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi.
Microbiology (Reading). 2008 Sep;154(Pt 9):2641-2658. doi: 10.1099/mic.0.2008/019992-0.
9
Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi.
J Bacteriol. 2005 Jul;187(14):4822-9. doi: 10.1128/JB.187.14.4822-4829.2005.
10
Insights into the complex regulation of rpoS in Borrelia burgdorferi.
Mol Microbiol. 2007 Jul;65(2):277-93. doi: 10.1111/j.1365-2958.2007.05813.x. Epub 2007 Jun 21.

引用本文的文献

1
Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen.
mBio. 2025 Mar 12;16(3):e0276624. doi: 10.1128/mbio.02766-24. Epub 2025 Jan 28.
2
contributes to the virulence of in a murine model of Lyme disease.
Infect Immun. 2025 Jan 31;93(1):e0045924. doi: 10.1128/iai.00459-24. Epub 2024 Dec 16.
3
Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen.
bioRxiv. 2024 Sep 15:2024.09.14.613071. doi: 10.1101/2024.09.14.613071.
5
Gene Regulation and Transcriptomics.
Curr Issues Mol Biol. 2021;42:223-266. doi: 10.21775/cimb.042.223. Epub 2020 Dec 10.
6
Role of HK2 in the Enzootic Cycle of .
Front Med (Lausanne). 2020 Oct 26;7:573648. doi: 10.3389/fmed.2020.573648. eCollection 2020.
7
The CXXC Motifs Are Essential for the Function of BosR in .
Front Cell Infect Microbiol. 2019 Apr 16;9:109. doi: 10.3389/fcimb.2019.00109. eCollection 2019.
8
The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis.
Front Neurol. 2018 Dec 3;9:1048. doi: 10.3389/fneur.2018.01048. eCollection 2018.
9
The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the Lyme disease pathogen.
Ticks Tick Borne Dis. 2018 Jul;9(5):1343-1349. doi: 10.1016/j.ttbdis.2018.06.006. Epub 2018 Jun 15.
10
Investigation of Expression Variation among Strains.
Front Cell Infect Microbiol. 2017 Apr 20;7:131. doi: 10.3389/fcimb.2017.00131. eCollection 2017.

本文引用的文献

1
Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in Borrelia burgdorferi.
PLoS One. 2015 Dec 17;10(12):e0144472. doi: 10.1371/journal.pone.0144472. eCollection 2015.
3
A balancing act times two: sensing and regulating cell envelope homeostasis in Bacillus subtilis.
Mol Microbiol. 2014 Dec;94(6):1201-7. doi: 10.1111/mmi.12848. Epub 2014 Nov 20.
4
Synthesis of RpoS is dependent on a putative enhancer binding protein Rrp2 in Borrelia burgdorferi.
PLoS One. 2014 May 8;9(5):e96917. doi: 10.1371/journal.pone.0096917. eCollection 2014.
6
Increasing RpoS expression causes cell death in Borrelia burgdorferi.
PLoS One. 2013 Dec 16;8(12):e83276. doi: 10.1371/journal.pone.0083276. eCollection 2013.
7
Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi.
Infect Immun. 2014 Jan;82(1):445-52. doi: 10.1128/IAI.01238-13. Epub 2013 Nov 11.
8
Manganese and zinc regulate virulence determinants in Borrelia burgdorferi.
Infect Immun. 2013 Aug;81(8):2743-52. doi: 10.1128/IAI.00507-13. Epub 2013 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验