Hidalgo-Acosta Jonnathan C, Scanlon Micheál D, Méndez Manuel A, Amstutz Véronique, Vrubel Heron, Opallo Marcin, Girault Hubert H
Laboratoire d'Electrochimie Physique et Analytique (LEPA), École Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, Rue de l'Industrie 17, Case Postale 440, 1951 Sion, Switzerland.
Phys Chem Chem Phys. 2016 Apr 7;18(13):9295-304. doi: 10.1039/c5cp06890h. Epub 2016 Mar 15.
Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.
通过使用由带负电荷的柠檬酸盐稳定的IrO₂纳米颗粒(NPs)和带正电荷的聚二烯丙基二甲基氯化铵(PDDA)聚合物的双层组成的逐层沉积膜修饰的氟氧化锡(FTO)电极,实现了水氧化的电催化。IrO₂ NP的表面覆盖率可以通过控制双层的数量进行微调。IrO₂ NP薄膜是非晶态的,其中的NP分散良好,并保持其合成后的形状和尺寸。紫外/可见光谱和光谱电化学研究证实,IrO₂ NPs的总表面覆盖率和电化学可寻址表面覆盖率随着双层数量的增加呈线性增加,直至10层。修饰电极的伏安法与水合氧化铱薄膜(HIROFs)的伏安法相同,观察到Ir(III)/Ir(IV)和Ir(IV)-Ir(IV)/Ir(IV)-Ir(V)氧化还原转变的超能斯特pH响应以及析氧起始电位的能斯特偏移。析氧反应(OER)的过电位基本上与pH无关,仅在从酸性到碱性条件下从0.22 V变化到0.28 V(在电流密度为0.1 mA cm⁻²时)。批量电解实验表明,IrO₂/PDDA薄膜在酸性和中性条件下稳定且附着,但在碱性溶液中会降解。在酸性(pH 1)和中性(pH 7)条件下,氧气以接近100%的法拉第效率析出,在碱性溶液(pH 13)中为88%。这种逐层方法构成了未来使用喷墨印刷技术大规模开发OER电极的基础。