Theodoratou Antigoni, Jonas Ulrich, Loppinet Benoit, Geue Thomas, Stangenberg Rene, Keller Rabea, Li Dan, Berger Rüdiger, Vermant Jan, Vlassopoulos Dimitris
Institute of Electronic Structure & Laser, Foundation for Research and Technology-Hellas (FORTH), 71110 Heraklion, Greece.
Department of Materials Science and Technology, University of Crete , 71003 Heraklion, Greece.
Langmuir. 2016 Apr 5;32(13):3139-51. doi: 10.1021/acs.langmuir.5b04744. Epub 2016 Mar 25.
Semifluorinated alkanes form monolayers with interesting properties at the air-water interface due to their pronounced amphi-solvophobic nature and the stiffness of the fluorocarbons. In the present work, using a combination of structural and dynamic probes, we investigated how small molecular changes can be used to control the properties of such an interface, in particular its organization, rheology, and reversibility during compression-expansion cycles. Starting from a reference system perfluor(dodecyl)dodecane, we first retained the linear structure but changed the linkage groups between the alkyl chains and the fluorocarbons, by introducing either a phenyl group or two oxygens. Next, the molecular structure was changed from linear to branched, with four side chains (two fluorocarbons and two hydrocarbons) connected to extended aromatic cores. Neutron reflectivity at the air-water interface and scanning force microscopy on deposited films show how the changes in the molecular structure affect molecular arrangement relative to the interface. Rheological and compression-expansion measurements demonstrate the significant consequences of these changes in molecular structure and interactions on the interfacial properties. Remarkably, even with these simple molecules, a wide range of surface rheological behaviors can be engineered, from viscous over viscoelastic to brittle solids, for very similar values of the surface pressure.
半氟化烷烃由于其显著的双疏溶剂性质和碳氟化合物的刚性,在气-水界面形成具有有趣性质的单分子层。在本工作中,我们结合结构和动力学探针,研究了如何利用小分子变化来控制这种界面的性质,特别是其在压缩-膨胀循环过程中的组织、流变学和可逆性。从全氟(十二烷基)十二烷这个参考体系出发,我们首先保留线性结构,但通过引入苯基或两个氧原子来改变烷基链和碳氟化合物之间的连接基团。接下来,分子结构从线性变为支化,有四个侧链(两个碳氟化合物和两个碳氢化合物)连接到扩展的芳香核上。气-水界面的中子反射率以及沉积膜上的扫描力显微镜显示了分子结构的变化如何影响相对于界面的分子排列。流变学和压缩-膨胀测量证明了这些分子结构和相互作用的变化对界面性质的重大影响。值得注意的是,即使使用这些简单分子,对于非常相似的表面压力值,也可以设计出从粘性到粘弹性再到脆性固体的广泛表面流变行为。