Suppr超能文献

通过热休克蛋白90、细胞血红素、可溶性鸟苷酸环化酶激动剂和一氧化氮对可溶性鸟苷酸环化酶的调节:新途径与临床前景

Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives.

作者信息

Ghosh Arnab, Stuehr Dennis J

机构信息

Department of Pathobiology, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio.

出版信息

Antioxid Redox Signal. 2017 Feb 1;26(4):182-190. doi: 10.1089/ars.2016.6690. Epub 2016 May 2.

Abstract

SIGNIFICANCE

Soluble guanylate cyclase (sGC) is an intracellular enzyme that plays a primary role in sensing nitric oxide (NO) and transducing its multiple signaling effects in mammals. Recent Advances: The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells, including sGC, where it helps to drive heme insertion into the sGC-β1 subunit. This allows sGC-β1 to associate with a partner sGC-α1 subunit and mature into an NO-responsive active form.

CRITICAL ISSUES

In this article, we review evidence to date regarding the mechanisms that modulate sGC activity by a pathway where binding of hsp90 or sGC agonist to heme-free sGC dictates the assembly and fate of an active sGC heterodimer, both by NO and heme-dependent or heme-independent pathways.

FUTURE DIRECTIONS

We discuss some therapeutic implications of the NO-sGC-hsp90 nexus and its potential as a marker of inflammatory disease. Antioxid. Redox Signal. 26, 182-190.

摘要

意义

可溶性鸟苷酸环化酶(sGC)是一种细胞内酶,在哺乳动物中感知一氧化氮(NO)并传导其多种信号效应方面发挥主要作用。

最新进展

伴侣热休克蛋白90(hsp90)与细胞中的信号蛋白相关联,包括sGC,它在其中帮助将血红素插入sGC-β1亚基。这使得sGC-β1能够与伴侣sGC-α1亚基结合并成熟为对NO有反应的活性形式。

关键问题

在本文中,我们综述了迄今为止关于通过hsp90或sGC激动剂与无血红素sGC结合决定活性sGC异二聚体的组装和命运的途径来调节sGC活性的机制的证据,该途径通过NO和血红素依赖性或血红素非依赖性途径。

未来方向

我们讨论了NO-sGC-hsp90关系的一些治疗意义及其作为炎症性疾病标志物的潜力。《抗氧化剂与氧化还原信号》26,182 - 190。

相似文献

1
Regulation of sGC via hsp90, Cellular Heme, sGC Agonists, and NO: New Pathways and Clinical Perspectives.
Antioxid Redox Signal. 2017 Feb 1;26(4):182-190. doi: 10.1089/ars.2016.6690. Epub 2016 May 2.
3
NO rapidly mobilizes cellular heme to trigger assembly of its own receptor.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2115774119.
5
Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
Antioxid Redox Signal. 2017 Jan 20;26(3):107-121. doi: 10.1089/ars.2016.6693. Epub 2016 Apr 26.
6
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase.
J Biol Chem. 2021 Jan-Jun;296:100336. doi: 10.1016/j.jbc.2021.100336. Epub 2021 Jan 26.
7
Soluble guanylyl cyclase requires heat shock protein 90 for heme insertion during maturation of the NO-active enzyme.
Proc Natl Acad Sci U S A. 2012 Aug 7;109(32):12998-3003. doi: 10.1073/pnas.1205854109. Epub 2012 Jul 25.
9
Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
Antioxid Redox Signal. 2017 Jan 20;26(3):137-149. doi: 10.1089/ars.2015.6591. Epub 2016 Apr 1.
10
Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism.
J Biol Chem. 2019 Aug 30;294(35):12880-12891. doi: 10.1074/jbc.RA119.009016. Epub 2019 Jul 15.

引用本文的文献

1
Flipping Off and On the Redox Switch in the Microcirculation.
Annu Rev Physiol. 2023 Feb 10;85:165-189. doi: 10.1146/annurev-physiol-031522-021457.
2
Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity.
Curr Res Struct Biol. 2021 Nov 18;3:324-336. doi: 10.1016/j.crstbi.2021.11.003. eCollection 2021.
3
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase.
J Biol Chem. 2021 Jan-Jun;296:100336. doi: 10.1016/j.jbc.2021.100336. Epub 2021 Jan 26.
4
New Insights Into Heat Shock Protein 90 in the Pathogenesis of Pulmonary Arterial Hypertension.
Front Physiol. 2020 Sep 15;11:1081. doi: 10.3389/fphys.2020.01081. eCollection 2020.
5
GAPDH delivers heme to soluble guanylyl cyclase.
J Biol Chem. 2020 Jun 12;295(24):8145-8154. doi: 10.1074/jbc.RA120.013802. Epub 2020 Apr 30.
6
Heat shock protein 90 regulates soluble guanylyl cyclase maturation by a dual mechanism.
J Biol Chem. 2019 Aug 30;294(35):12880-12891. doi: 10.1074/jbc.RA119.009016. Epub 2019 Jul 15.
7
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension.
Antioxidants (Basel). 2019 May 16;8(5):135. doi: 10.3390/antiox8050135.
8
Soluble Guanylate Cyclase Stimulators and Activators.
Handb Exp Pharmacol. 2021;264:355-394. doi: 10.1007/164_2018_197.
9
Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology.
Antioxid Redox Signal. 2019 Oct 1;31(10):752-769. doi: 10.1089/ars.2018.7657. Epub 2018 Dec 21.
10
Nitric oxide synthase enzymology in the 20 years after the Nobel Prize.
Br J Pharmacol. 2019 Jan;176(2):177-188. doi: 10.1111/bph.14533. Epub 2018 Dec 9.

本文引用的文献

2
The activation mechanism of the aryl hydrocarbon receptor (AhR) by molecular chaperone HSP90.
FEBS Open Bio. 2014 Sep 16;4:796-803. doi: 10.1016/j.fob.2014.09.003. eCollection 2014.
3
Pulmonary arterial hypertension: the clinical syndrome.
Circ Res. 2014 Jun 20;115(1):115-30. doi: 10.1161/CIRCRESAHA.115.301146.
5
Nitric oxide-induced conformational changes in soluble guanylate cyclase.
Structure. 2014 Apr 8;22(4):602-11. doi: 10.1016/j.str.2014.01.008. Epub 2014 Feb 20.
6
New insights into the role of soluble guanylate cyclase in blood pressure regulation.
Curr Opin Nephrol Hypertens. 2014 Mar;23(2):135-42. doi: 10.1097/01.mnh.0000441048.91041.3a.
7
Structure, function and regulation of the hsp90 machinery.
Biomed J. 2013 May-Jun;36(3):106-17. doi: 10.4103/2319-4170.113230.
9
Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验