Leiseifer H P
Abteilung Biophysikalische Chemie-ICH, Kernforschungsanlage Jülich GmbH, Bundesrepublik Deutschland.
Z Naturforsch C J Biosci. 1989 Nov-Dec;44(11-12):1036-48. doi: 10.1515/znc-1989-11-1226.
The heat production of E. coli K12 growing aerobically in glucose limited chemostat cultures is determined in the range of specific growth rates mu (= dilution rates D) from 0.058 h-1 to 0.852 h-1 for two different glucose concentrations Se in the instream of the chemostat, namely Se1 = 0.3182 g.l-1 and Se2 = 0.6364 g.l-1. Heat production Q and biomass production P per unit of culture volume show well correlated patterns for Se1 and Se2. For Se1 the highest value Q actually measured is 443.10(-3) W.l-1 at D = 0.74 h-1 with P = 0.068 g.l-1.h-1; and for Se2 593.10(-3) W.l-1 at D = 0.497 h-1 with P = 0.108 g.l-1.h-1. Heat production QB per unit of biomass appears to be independent of Se at least up to D = 0.5 h-1. At higher D there is strong indication that QB possesses a real maximum. The highest value of QB actually measured is 4.8 W.g-1 at D = 0.74 h-1. For Se1 and Se2 there were significantly higher specific growth rates verified in chemostat culture than mu Batchmax = 0.717 h-1 which is the maximum specific growth rate in comparable, unlimited batch cultures. The real maximum of QB is estimated to be in the vicinity of mu Batchmax. This suggests the hypothesis of a maximum principle for the growth in batch culture. For Se1 a closed analytical expression is derived for the relationship between mu and the substrate concentration S. mu[S] features a S-shaped characteristic with mu Chemostatmax = 0.905 h-1; 1/2 mu Chemostatmax is reached at S = 2.85.10(-3) g.l-1. Three basic parameters which characterize the overall metabolism of the cells, namely the heat released per unit of substrate consumed, Qs, the effective yield of biomass, Yeff, and mu Chemostatmax are identified to depend on Se.
在葡萄糖受限的恒化器培养中,对需氧生长的大肠杆菌K12的产热进行了测定,测定范围为比生长速率μ(=稀释率D)从0.058 h⁻¹至0.852 h⁻¹,针对恒化器进流中两种不同的葡萄糖浓度Se,即Se1 = 0.3182 g·L⁻¹和Se2 = 0.6364 g·L⁻¹。对于Se1和Se2,单位培养体积的产热Q和生物量生产P呈现出良好的相关模式。对于Se1,实际测量的最高值Q为443×10⁻³ W·L⁻¹,此时D = 0.74 h⁻¹,P = 0.068 g·L⁻¹·h⁻¹;对于Se2,最高值为593×10⁻³ W·L⁻¹,此时D = 0.497 h⁻¹,P = 0.108 g·L⁻¹·h⁻¹。单位生物量的产热QB至少在D = 0.5 h⁻¹之前似乎与Se无关。在更高的D值时,有强烈迹象表明QB存在一个真正的最大值。实际测量的QB最高值为4.8 W·g⁻¹,此时D = 0.74 h⁻¹。对于Se1和Se2,在恒化器培养中验证的比生长速率显著高于μBatchmax = 0.717 h⁻¹,μBatchmax是可比的、无限制分批培养中的最大比生长速率。QB的真正最大值估计在μBatchmax附近。这提示了分批培养生长的最大原理假说。对于Se1,推导了μ与底物浓度S之间关系的封闭解析表达式。μ[S]具有S形特征,μChemostatmax = 0.905 h⁻¹;在S = 2.85×10⁻³ g·L⁻¹时达到1/2μChemostatmax。确定了表征细胞整体代谢的三个基本参数,即单位消耗底物释放的热量Qs、生物量的有效产率Yeff和μChemostatmax取决于Se。