Zamboni I, Debal M, Matt M, Girods P, Kiennemann A, Rogaume Y, Courson C
Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES) UMR CNRS 7515, ECPM, Université de Strasbourg, Strasbourg, France.
Laboratoire d'Etudes et de Recherches sur le Matériau Bois (LERMAB) EA 4370, Université de Lorraine, Lorraine, France.
Environ Sci Pollut Res Int. 2016 Nov;23(22):22253-22266. doi: 10.1007/s11356-016-6444-4. Epub 2016 Mar 21.
The main objective of this work concerns the coupling of biomass gasification reaction and CO sorption. The study shows the feasibility to promote biomass steam gasification in a dense fluidized bed reactor with CO sorption to enhance tar removal and hydrogen production. It also proves the efficiency of CaO-CaAlO/olivine bi-functional materials to reduce heavy tar production. Experiments have been carried out in a fluidized bed gasifier using steam as the fluidizing medium to improve hydrogen production. Bed materials consisting of CaO-based oxide for CO sorption (CaO-CaAlO) deposited on olivine for tar reduction were synthesized, their structural and textural properties were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and temperature-programmed reduction (TPR) methods, and the determination of their sorption capacity and stability analyzed by thermogravimetric analysis (TGA). It appears that this CaO-CaAlO/olivine sorbent/catalyst presents a good CO sorption stability (for seven cycles of carbonation/decarbonation). Compared to olivine and Fe/olivine in a fixed bed reactor for steam reforming of toluene chosen as tar model compound, it shows a better hydrogen production rate and a lower CO selectivity due to its sorption on the CaO phase. In the biomass steam gasification, the use of CaO-CaAlO/olivine as bed material at 700 °C leads to a higher H production than olivine at 800 °C thanks to CO sorption. Similar tar concentration and lighter tar production (analyzed by HPLC/UV) are observed. At 700 °C, sorbent addition allows to halve tar content and to eliminate the heaviest tars.
这项工作的主要目标是生物质气化反应与CO吸附的耦合。该研究表明,在具有CO吸附功能的密相流化床反应器中促进生物质蒸汽气化以提高焦油去除率和氢气产量是可行的。它还证明了CaO-CaAlO/橄榄石双功能材料在减少重质焦油生成方面的效率。在流化床气化炉中以蒸汽作为流化介质进行了实验,以提高氢气产量。合成了负载在橄榄石上用于减少焦油的CaO基CO吸附氧化物(CaO-CaAlO)作为床料,通过Brunauer-Emmett-Teller(BET)、X射线衍射(XRD)和程序升温还原(TPR)方法对其结构和织构性质进行了表征,并通过热重分析(TGA)分析了它们的吸附容量和稳定性。结果表明,这种CaO-CaAlO/橄榄石吸附剂/催化剂具有良好的CO吸附稳定性(碳酸化/脱碳酸化七个循环)。与在固定床反应器中用于以甲苯作为焦油模型化合物进行蒸汽重整的橄榄石和Fe/橄榄石相比,由于其在CaO相上的吸附,它显示出更高的氢气产率和更低的CO选择性。在生物质蒸汽气化中,在700℃下使用CaO-CaAlO/橄榄石作为床料,由于CO吸附,其H产量高于800℃下的橄榄石。观察到类似的焦油浓度和更轻的焦油生成(通过HPLC/UV分析)。在700℃下,添加吸附剂可使焦油含量减半并消除最重的焦油。