Josifova Dragana J, Monroe Glen R, Tessadori Federico, de Graaff Esther, van der Zwaag Bert, Mehta Sarju G, Harakalova Magdalena, Duran Karen J, Savelberg Sanne M C, Nijman Isaäc J, Jungbluth Heinz, Hoogenraad Casper C, Bakkers Jeroen, Knoers Nine V, Firth Helen V, Beales Philip L, van Haaften Gijs, van Haelst Mieke M
Department of Clinical Genetics, Guys' and St. Thomas' Hospital, London SE1 7EH, UK.
Department of Genetics Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
Hum Mol Genet. 2016 Jun 1;25(11):2158-2167. doi: 10.1093/hmg/ddw082. Epub 2016 Mar 22.
We identified de novo nonsense variants in KIDINS220/ARMS in three unrelated patients with spastic paraplegia, intellectual disability, nystagmus, and obesity (SINO). KIDINS220 is an essential scaffold protein coordinating neurotrophin signal pathways in neurites and is spatially and temporally regulated in the brain. Molecular analysis of patients' variants confirmed expression and translation of truncated transcripts similar to recently characterized alternative terminal exon splice isoforms of KIDINS220 KIDINS220 undergoes extensive alternative splicing in specific neuronal populations and developmental time points, reflecting its complex role in neuronal maturation. In mice and humans, KIDINS220 is alternative spliced in the middle region as well as in the last exon. These full-length and KIDINS220 splice variants occur at precise moments in cortical, hippocampal, and motor neuron development, with splice variants similar to the variants seen in our patients and lacking the last exon of KIDINS220 occurring in adult rather than in embryonic brain. We conducted tissue-specific expression studies in zebrafish that resulted in spasms, confirming a functional link with disruption of the KIDINS220 levels in developing neurites. This work reveals a crucial physiological role of KIDINS220 in development and provides insight into how perturbation of the complex interplay of KIDINS220 isoforms and their relative expression can affect neuron control and human metabolism. Altogether, we here show that de novo protein-truncating KIDINS220 variants cause a new syndrome, SINO. This is the first report of KIDINS220 variants causing a human disease.
我们在三名患有痉挛性截瘫、智力残疾、眼球震颤和肥胖症(SINO)的无亲缘关系患者中,鉴定出KIDINS220/ARMS基因中的新生无义变异。KIDINS220是一种重要的支架蛋白,可协调神经突中的神经营养因子信号通路,且在大脑中受到时空调节。对患者变异的分子分析证实了截短转录本的表达和翻译,这些转录本类似于最近鉴定出的KIDINS220的可变末端外显子剪接异构体。KIDINS220在特定的神经元群体和发育时间点经历广泛的可变剪接,反映出其在神经元成熟中的复杂作用。在小鼠和人类中,KIDINS220在中间区域以及最后一个外显子中都存在可变剪接。这些全长和KIDINS220剪接变体在皮质、海马和运动神经元发育的精确时刻出现,与我们患者中所见变体相似且缺乏KIDINS220最后一个外显子的剪接变体出现在成体而非胚胎大脑中。我们在斑马鱼中进行了组织特异性表达研究,结果导致痉挛,证实了与发育中神经突中KIDINS220水平破坏的功能联系。这项工作揭示了KIDINS220在发育中的关键生理作用,并深入了解了KIDINS220异构体及其相对表达的复杂相互作用的扰动如何影响神经元控制和人类代谢。总之,我们在此表明,新生的截短KIDINS220变体导致一种新的综合征,即SINO。这是KIDINS220变体导致人类疾病的首次报道。