IEEE Trans Med Imaging. 2016 Sep;35(9):2015-2025. doi: 10.1109/TMI.2016.2544199. Epub 2016 Mar 18.
A novel semi-automatic algorithm for aortic valve (AV) wall segmentation is presented for 3D transesophageal echocardiography (TEE) datasets. The proposed methodology uses a 3D cylindrical formulation of the B-spline Explicit Active Surfaces (BEAS) framework in a dual-stage energy evolution process, comprising a threshold-based and a localized region-based stage. Hereto, intensity and shape-based features are combined to accurately delineate the AV wall from the ascending aorta (AA) to the left ventricular outflow tract (LVOT). Shape-prior information is included using a profile-based statistical shape model (SSM), and embedded in BEAS through two novel regularization terms: one confining the segmented AV profiles to shapes seen in the SSM (hard regularization) and another penalizing according to the profile's degree of likelihood (soft regularization). The proposed energy functional takes thus advantage of the intensity data in regions with strong image content, while complementing it with shape knowledge in regions with nearly absent image data. The proposed algorithm has been validated in 20 3D-TEE datasets with both stenotic and non-stenotic valves. It was shown to be accurate, robust and computationally efficient, taking less than 1 second to segment the AV wall from the AA to the LVOT with an average accuracy of 0.78 mm. Semi-automatically extracted measurements at four relevant anatomical levels (LVOT, aortic annulus, sinuses of Valsalva and sinotubular junction) showed an excellent agreement with experts' ones, with a higher reproducibility than manually-extracted measures.
提出了一种用于 3D 经食管超声心动图(TEE)数据集的主动脉瓣(AV)壁半自动分割的新算法。该方法在双阶段能量演化过程中使用 3D 圆柱形式的 B 样条显式主动曲面(BEAS)框架,包括基于阈值和基于局部区域的阶段。为此,结合强度和形状特征,从升主动脉(AA)到左心室流出道(LVOT)准确地描绘 AV 壁。通过基于轮廓的统计形状模型(SSM)嵌入形状先验信息,并通过两个新的正则化项将其包含在 BEAS 中:一个将分割的 AV 轮廓限制为 SSM 中看到的形状(硬正则化),另一个根据轮廓的可能性程度进行惩罚(软正则化)。因此,所提出的能量函数利用了具有强图像内容的区域中的强度数据,同时通过形状知识对几乎没有图像数据的区域进行补充。所提出的算法已在 20 个具有狭窄和非狭窄瓣膜的 3D-TEE 数据集上进行了验证。结果表明,该算法准确、鲁棒且计算效率高,从 AA 到 LVOT 半自动分割 AV 壁的平均用时不到 1 秒,平均精度为 0.78 毫米。在四个相关解剖学水平(LVOT、主动脉瓣环、瓦尔萨尔瓦窦和窦管连接部)半自动提取的测量值与专家的测量值非常吻合,与手动提取的测量值相比,具有更高的可重复性。