Peterson James T, Freeman Mary C
US Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Oregon State University, Corvallis, OR, USA.
US Geological Survey, Patuxent Wildlife Research Center, Athens, GA, USA.
J Environ Manage. 2016 Dec 1;183(Pt 2):361-370. doi: 10.1016/j.jenvman.2016.03.015. Epub 2016 Mar 21.
Stream ecosystems provide multiple, valued services to society, including water supply, waste assimilation, recreation, and habitat for diverse and productive biological communities. Managers striving to sustain these services in the face of changing climate, land uses, and water demands need tools to assess the potential effectiveness of alternative management actions, and often, the resulting tradeoffs between competing objectives. Integrating predictive modeling with monitoring data in an adaptive management framework provides a process by which managers can reduce model uncertainties and thus improve the scientific bases for subsequent decisions. We demonstrate an integration of monitoring data with a dynamic, metapopulation model developed to assess effects of streamflow alteration on fish occupancy in a southeastern US stream system. Although not extensive (collected over three years at nine sites), the monitoring data allowed us to assess and update support for alternative population dynamic models using model probabilities and Bayes rule. We then use the updated model weights to estimate the effects of water withdrawal on stream fish communities and demonstrate how feedback in the form of monitoring data can be used to improve water resource decision making. We conclude that investment in more strategic monitoring, guided by a priori model predictions under alternative hypotheses and an adaptive sampling design, could substantially improve the information available to guide decision-making and management for ecosystem services from lotic systems.
河流生态系统为社会提供了多种有价值的服务,包括供水、废物同化、娱乐以及为多样且高产的生物群落提供栖息地。面对气候变化、土地利用和用水需求的变化,致力于维持这些服务的管理者需要工具来评估替代管理行动的潜在有效性,以及通常在相互竞争的目标之间产生的权衡。在适应性管理框架中将预测模型与监测数据相结合,提供了一个过程,管理者可以通过这个过程减少模型的不确定性,从而改善后续决策的科学依据。我们展示了将监测数据与一个动态的集合种群模型相结合,该模型旨在评估美国东南部河流系统中流量变化对鱼类占有率的影响。尽管监测数据并不广泛(在九个地点历时三年收集),但这些数据使我们能够使用模型概率和贝叶斯规则来评估和更新对替代种群动态模型的支持。然后,我们使用更新后的模型权重来估计取水对河流鱼类群落的影响,并展示如何利用监测数据形式的反馈来改善水资源决策。我们得出结论,在先验模型预测和适应性抽样设计的指导下,对更具战略性的监测进行投资,可以显著改善用于指导河流系统生态系统服务决策和管理的可用信息。