Aerospace, Division of Engineering and Applied Sciences California Institute of Technology 1200 East California Boulevard, MC 205-45, Pasadena, CA 91125, USA.
Applied and Computational Mathematics, Division of Engineering and Applied Sciences California Institute of Technology 1200 East California Boulevard, MC 9-94, Pasadena, CA 91125, USA.
R Soc Open Sci. 2015 Dec 16;2(12):150475. doi: 10.1098/rsos.150475. eCollection 2015 Dec.
In this paper, we analyse the convergence, accuracy and stability of the intrinsic frequency (IF) method. The IF method is a descendant of the sparse time frequency representation methods. These methods are designed for analysing nonlinear and non-stationary signals. Specifically, the IF method is created to address the cardiovascular system that by nature is a nonlinear and non-stationary dynamical system. The IF method is capable of handling specific nonlinear and non-stationary signals with less mathematical regularity. In previous works, we showed the clinical importance of the IF method. There, we showed that the IF method can be used to evaluate cardiovascular performance. In this article, we will present further details of the mathematical background of the IF method by discussing the convergence and the accuracy of the method with and without noise. It will be shown that the waveform fit extracted from the signal is accurate even in the presence of noise.
在本文中,我们分析了固有频率(IF)方法的收敛性、准确性和稳定性。IF 方法是稀疏时频表示方法的一个分支。这些方法旨在分析非线性和非平稳信号。具体来说,IF 方法是为处理心血管系统而创建的,因为心血管系统本质上是一个非线性和非平稳的动力系统。IF 方法能够以较少的数学规则处理特定的非线性和非平稳信号。在以前的工作中,我们展示了 IF 方法的临床重要性。在那里,我们表明 IF 方法可用于评估心血管性能。在本文中,我们将通过讨论有噪声和无噪声情况下方法的收敛性和准确性,进一步介绍 IF 方法的数学背景的详细信息。结果表明,即使存在噪声,从信号中提取的波形拟合也是准确的。