Suppr超能文献

冷冻保存和解冻后的再刺激可保留扩增的狒狒调节性T细胞的表型和功能。

Restimulation After Cryopreservation and Thawing Preserves the Phenotype and Function of Expanded Baboon Regulatory T Cells.

作者信息

Weiner Joshua, Duran-Struuck Raimon, Zitsman Jonah, Buhler Leo, Sondermeijer Hugo, McMurchy Alicia N, Levings Megan K, Sykes Megan, Griesemer Adam

机构信息

Columbia Center for Translational Immunology, Columbia University Medical Center, 650 West 168 Street, Black Building 15 Floor, New York, NY 10032,

Department of Surgery, University Hospital of Geneva, 24 Rue Micheli du Crest, Geneva 141211, Switzerland,

出版信息

Transplant Direct. 2015 Feb 1;1(1):1-7. doi: 10.1097/TXD.0000000000000511.

Abstract

BACKGROUND

Regulatory T cells (Treg) are being explored for their tolerance-inducing capabilities. Freezing and banking Treg for future use makes this strategy more clinically applicable. We aimed to devise an improved method of expanding and cryopreserving Treg to maximize yield, purity, and function for use in xenotransplantation.

METHODS

Baboon peripheral blood mononuclear cells (PBMC) were isolated from whole blood. CD4+/CD25 cells were isolated by flow cytometric sorting and expanded for 26 days in culture with IL-2, anti-CD3 antibody, artificial APCs transfected with human CD58, CD32, and CD80, and rapamycin with weekly restimulations. Expanded Treg were frozen for 2 months then thawed and cultured for 48 hours in medium plus 1) no additives, 2) IL-2, 3) anti-CD3 antibody, 4) IL-2 + anti-CD3 antibody, and 5) IL-2 + anti-CD3 antibody + L cells. Phenotype and suppression were assessed after expansion, immediately after thawing, and after culturing.

RESULTS

We expanded purified baboon Treg more than 10,000-fold. Expanded Treg exhibited excellent suppression in functional assays. Cryopreservation decreased suppressive function without changing phenotype, but increasing amounts of reactivation after thawing produced significantly better viability and suppressive function with a trend towards greater Treg purity.

CONCLUSIONS

We produced numbers of expanded Tregs consistent with clinical use. In contrast to some previous reports, both Treg phenotype and suppressive function were preserved or even enhanced by increasing amounts of restimulation after thawing. Thus, banking of expanded recipient Tregs for infusion should be possible.

摘要

背景

调节性T细胞(Treg)因其诱导免疫耐受的能力而受到研究。冷冻保存Treg以备将来使用使该策略更具临床适用性。我们旨在设计一种改进的方法来扩增和冷冻保存Treg,以最大化其产量、纯度和功能,用于异种移植。

方法

从狒狒全血中分离外周血单个核细胞(PBMC)。通过流式细胞术分选CD4+/CD25细胞,并在含有白细胞介素-2(IL-2)、抗CD3抗体、转染了人CD58、CD32和CD80的人工抗原呈递细胞(APC)以及雷帕霉素的培养基中培养26天,每周进行再刺激。将扩增后的Treg冷冻2个月,然后解冻,并在培养基中培养48小时,培养基添加以下成分:1)无添加剂;2)IL-2;3)抗CD3抗体;4)IL-2 +抗CD3抗体;5)IL-2 +抗CD3抗体 + L细胞。在扩增后、解冻后立即以及培养后评估细胞表型和抑制功能。

结果

我们将纯化的狒狒Treg扩增了超过10000倍。扩增后的Treg在功能试验中表现出优异的抑制能力。冷冻保存降低了抑制功能,但未改变细胞表型,不过解冻后增加再刺激量可显著提高细胞活力和抑制功能,且Treg纯度有增加趋势。

结论

我们获得的扩增Treg数量符合临床应用要求。与之前的一些报道不同,解冻后增加再刺激量可保留甚至增强Treg的表型和抑制功能。因此,扩增后的受体Treg冻存后用于输注应该是可行的。

相似文献

2
Ex-vivo expanded baboon CD4+ CD25 Hi Treg cells suppress baboon anti-pig T and B cell immune response.
Xenotransplantation. 2012 Mar-Apr;19(2):102-11. doi: 10.1111/j.1399-3089.2012.00697.x.
5
Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype.
Oncotarget. 2018 Jan 3;9(11):9728-9740. doi: 10.18632/oncotarget.23887. eCollection 2018 Feb 9.
6
Generation, cryopreservation, function and in vivo persistence of ex vivo expanded cynomolgus monkey regulatory T cells.
Cell Immunol. 2015 May;295(1):19-28. doi: 10.1016/j.cellimm.2015.02.006. Epub 2015 Feb 14.
7
Isolation strategies of regulatory T cells for clinical trials: phenotype, function, stability, and expansion capacity.
Exp Hematol. 2011 Dec;39(12):1152-60. doi: 10.1016/j.exphem.2011.08.010. Epub 2011 Aug 22.
10
Large-scale in vitro expansion of human regulatory T cells with potent xenoantigen-specific suppression.
Cytotechnology. 2016 Aug;68(4):935-45. doi: 10.1007/s10616-015-9845-1. Epub 2015 Jan 22.

引用本文的文献

1
Navigating the manufacturing, testing and regulatory complexities of regulatory T cells for adoptive cell therapy.
Front Immunol. 2025 Jul 16;16:1626085. doi: 10.3389/fimmu.2025.1626085. eCollection 2025.
2
Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque.
Cell Rep Med. 2022 May 17;3(5):100614. doi: 10.1016/j.xcrm.2022.100614. Epub 2022 May 11.
3
Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models.
Front Cell Dev Biol. 2021 Jun 15;9:666959. doi: 10.3389/fcell.2021.666959. eCollection 2021.
5
Induction of stable human FOXP3 Tregs by a parasite-derived TGF-β mimic.
Immunol Cell Biol. 2021 Sep;99(8):833-847. doi: 10.1111/imcb.12475. Epub 2021 Jun 3.
6
Antigen Specificity Enhances Disease Control by Tregs in Vitiligo.
Front Immunol. 2020 Dec 1;11:581433. doi: 10.3389/fimmu.2020.581433. eCollection 2020.
7
Regulatory T-cell Number in Peripheral Blood at 1 Year Posttransplant as Predictor of Long-term Kidney Graft Survival.
Transplant Direct. 2019 Feb 8;5(3):e426. doi: 10.1097/TXD.0000000000000871. eCollection 2019 Mar.
8
Xenotransplantation tolerance: applications for recent advances in modified swine.
Curr Opin Organ Transplant. 2018 Dec;23(6):642-648. doi: 10.1097/MOT.0000000000000585.
9
Cell banking for regulatory T cell-based therapy: strategies to overcome the impact of cryopreservation on the Treg viability and phenotype.
Oncotarget. 2018 Jan 3;9(11):9728-9740. doi: 10.18632/oncotarget.23887. eCollection 2018 Feb 9.

本文引用的文献

1
Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning.
Am J Transplant. 2014 Apr;14(4):750-63. doi: 10.1111/ajt.12647. Epub 2014 Mar 4.
2
Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis.
Nat Med. 2014 Jan;20(1):62-8. doi: 10.1038/nm.3432. Epub 2013 Dec 22.
3
Natural CD8+CD122+ T cells are more potent in suppression of allograft rejection than CD4+CD25+ regulatory T cells.
Am J Transplant. 2014 Jan;14(1):39-48. doi: 10.1111/ajt.12515. Epub 2013 Nov 12.
4
Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation.
Am J Transplant. 2013 Nov;13(11):3010-20. doi: 10.1111/ajt.12433. Epub 2013 Sep 18.
5
Treatment of graft-versus-host disease with naturally occurring T regulatory cells.
BioDrugs. 2013 Dec;27(6):605-14. doi: 10.1007/s40259-013-0050-5.
6
Do cryopreserved regulatory T cells retain their suppressive potency?
Transplantation. 2013 Jun 15;95(11):e68-70. doi: 10.1097/TP.0b013e318291175c.
7
Challenges in cryopreservation of regulatory T cells (Tregs) for clinical therapeutic applications.
Int Immunopharmacol. 2013 Jul;16(3):371-5. doi: 10.1016/j.intimp.2013.02.001. Epub 2013 Feb 18.
8
Ex-vivo expanded baboon CD4+ CD25 Hi Treg cells suppress baboon anti-pig T and B cell immune response.
Xenotransplantation. 2012 Mar-Apr;19(2):102-11. doi: 10.1111/j.1399-3089.2012.00697.x.
9
Regulatory T cells exhibit decreased proliferation but enhanced suppression after pulsing with sirolimus.
Am J Transplant. 2012 Jun;12(6):1441-57. doi: 10.1111/j.1600-6143.2011.03963.x. Epub 2012 Feb 2.
10
Tregs: application for solid-organ transplantation.
Curr Opin Organ Transplant. 2012 Feb;17(1):34-41. doi: 10.1097/MOT.0b013e32834ee69f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验