Suppr超能文献

高度动态且特异的磷脂酰肌醇4,5-二磷酸、Septin及细胞壁完整性信号通路反应与卡泊芬净对白色念珠菌的活性相关。

Highly Dynamic and Specific Phosphatidylinositol 4,5-Bisphosphate, Septin, and Cell Wall Integrity Pathway Responses Correlate with Caspofungin Activity against Candida albicans.

作者信息

Badrane Hassan, Nguyen M Hong, Clancy Cornelius J

机构信息

Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Antimicrob Agents Chemother. 2016 May 23;60(6):3591-600. doi: 10.1128/AAC.02711-15. Print 2016 Jun.

Abstract

Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] activates the yeast cell wall integrity pathway. Candida albicans exposure to caspofungin results in the rapid redistribution of PI(4,5)P2 and septins to plasma membrane foci and subsequent fungicidal effects. We studied C. albicans PI(4,5)P2 and septin dynamics and protein kinase C (PKC)-Mkc1 cell wall integrity pathway activation following exposure to caspofungin and other drugs. PI(4,5)P2 and septins were visualized by live imaging of C. albicans cells coexpressing green fluorescent protein (GFP)-pleckstrin homology (PH) domain and red fluorescent protein-Cdc10p, respectively. PI(4,5)P2 was also visualized in GFP-PH domain-expressing C. albicans mkc1 mutants. Mkc1p phosphorylation was measured as a marker of PKC-Mkc1 pathway activation. Fungicidal activity was assessed using 20-h time-kill assays. Caspofungin immediately induced PI(4,5)P2 and Cdc10p colocalization to aberrant foci, a process that was highly dynamic over 3 h. PI(4,5)P2 levels increased in a dose-response manner at caspofungin concentrations of ≤4× MIC and progressively decreased at concentrations of ≥8× MIC. Caspofungin exposure resulted in broad-based mother-daughter bud necks and arrested septum-like structures, in which PI(4,5)P2 and Cdc10 colocalized. PKC-Mkc1 pathway activation was maximal within 10 min, peaked in response to caspofungin at 4× MIC, and declined at higher concentrations. The caspofungin-induced PI(4,5)P2 redistribution remained apparent in mkc1 mutants. Caspofungin exerted dose-dependent killing and paradoxical effects at ≤4× and ≥8× MIC, respectively. Fluconazole, amphotericin B, calcofluor white, and H2O2 did not impact the PI(4,5)P2 or Cdc10p distribution like caspofungin did. Caspofungin exerts rapid PI(4,5)P2-septin and PKC-Mkc1 responses that correlate with the extent of C. albicans killing, and the responses are not induced by other antifungal agents. PI(4,5)P2-septin regulation is crucial in early caspofungin responses and PKC-Mkc1 activation.

摘要

磷脂酰肌醇4,5 - 二磷酸[PI(4,5)P2]激活酵母细胞壁完整性信号通路。白色念珠菌暴露于卡泊芬净会导致PI(4,5)P2和隔膜蛋白迅速重新分布到质膜病灶,随后产生杀真菌作用。我们研究了白色念珠菌暴露于卡泊芬净和其他药物后PI(4,5)P2和隔膜蛋白的动态变化以及蛋白激酶C(PKC)-Mkc1细胞壁完整性信号通路的激活情况。通过分别共表达绿色荧光蛋白(GFP)-普列克底物蛋白同源(PH)结构域和红色荧光蛋白-Cdc10p的白色念珠菌细胞的实时成像来观察PI(4,5)P2和隔膜蛋白。在表达GFP-PH结构域的白色念珠菌mkc1突变体中也观察到了PI(4,5)P2。测量Mkc1p的磷酸化作为PKC-Mkc1信号通路激活的标志物。使用20小时的时间杀菌试验评估杀真菌活性。卡泊芬净立即诱导PI(4,5)P2和Cdc10p共定位到异常病灶,这一过程在3小时内高度动态变化。在卡泊芬净浓度≤四倍最小抑菌浓度(MIC)时,PI(4,5)P2水平呈剂量反应性增加,而在浓度≥八倍MIC时逐渐降低。卡泊芬净暴露导致母-女芽颈变宽并形成类似隔膜的停滞结构,其中PI(4,5)P2和Cdc10共定位。PKC-Mkc1信号通路激活在10分钟内达到最大值,在四倍MIC的卡泊芬净作用下达到峰值,在更高浓度时下降。卡泊芬净诱导的PI(4,5)P2重新分布在mkc1突变体中仍然明显。卡泊芬净分别在≤四倍MIC和≥八倍MIC时产生剂量依赖性杀伤和矛盾效应。氟康唑、两性霉素B、钙荧光白和过氧化氢不像卡泊芬净那样影响PI(4,5)P2或Cdc10p的分布。卡泊芬净产生快速的PI(4,5)P2-隔膜蛋白和PKC-Mkc1反应,这些反应与白色念珠菌的杀伤程度相关,且其他抗真菌药物不会诱导这些反应。PI(4,5)P2-隔膜蛋白调节在卡泊芬净早期反应和PKC-Mkc1激活中至关重要。

相似文献

2
Rapid redistribution of phosphatidylinositol-(4,5)-bisphosphate and septins during the Candida albicans response to caspofungin.
Antimicrob Agents Chemother. 2012 Sep;56(9):4614-24. doi: 10.1128/AAC.00112-12. Epub 2012 Jun 11.
3
Efg1 Controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1.
Eukaryot Cell. 2011 Dec;10(12):1694-704. doi: 10.1128/EC.05187-11. Epub 2011 Oct 28.
4
Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion.
Antimicrob Agents Chemother. 2011 Jul;55(7):3591-3. doi: 10.1128/AAC.01701-10. Epub 2011 Apr 25.
5
Five-minute exposure to caspofungin results in prolonged postantifungal effects and eliminates the paradoxical growth of Candida albicans.
Antimicrob Agents Chemother. 2011 Jul;55(7):3598-602. doi: 10.1128/AAC.00095-11. Epub 2011 May 2.
6
Caspofungin-induced β(1,3)-glucan exposure in is driven by increased chitin levels.
mBio. 2023 Aug 31;14(4):e0007423. doi: 10.1128/mbio.00074-23. Epub 2023 Jun 28.
7
Paradoxical effect of caspofungin against Candida bloodstream isolates is mediated by multiple pathways but eliminated in human serum.
Antimicrob Agents Chemother. 2011 Jun;55(6):2641-7. doi: 10.1128/AAC.00999-10. Epub 2011 Mar 21.
8
Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans.
Antimicrob Agents Chemother. 2014;58(1):167-75. doi: 10.1128/AAC.01385-13. Epub 2013 Oct 21.
9
SCY-078 Is Fungicidal against Candida Species in Time-Kill Studies.
Antimicrob Agents Chemother. 2017 Feb 23;61(3). doi: 10.1128/AAC.01961-16. Print 2017 Mar.

引用本文的文献

3
Deletion of core septin gene in results in fungicidal activity of caspofungin.
bioRxiv. 2025 Feb 25:2025.02.25.640155. doi: 10.1101/2025.02.25.640155.
4
Sur7 mediates a novel pathway for PIP regulation in that promotes stress resistance and cell wall morphogenesis.
Mol Biol Cell. 2024 Jul 1;35(7):ar99. doi: 10.1091/mbc.E23-08-0324. Epub 2024 May 22.
5
Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi.
Virulence. 2024 Dec;15(1):2299183. doi: 10.1080/21505594.2023.2299183. Epub 2023 Dec 29.
6
Caspofungin-induced β(1,3)-glucan exposure in is driven by increased chitin levels.
mBio. 2023 Aug 31;14(4):e0007423. doi: 10.1128/mbio.00074-23. Epub 2023 Jun 28.
7
Cyclic lipopeptides as membrane fusion inhibitors against SARS-CoV-2: New tricks for old dogs.
Antiviral Res. 2023 Apr;212:105575. doi: 10.1016/j.antiviral.2023.105575. Epub 2023 Mar 2.
8
AFM evaluation of a humanized recombinant antibody affecting cell wall and stability.
RSC Adv. 2023 Feb 20;13(9):6130-6142. doi: 10.1039/d2ra07217c. eCollection 2023 Feb 14.
9
Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi.
Appl Microbiol Biotechnol. 2022 Jun;106(11):3895-3912. doi: 10.1007/s00253-022-11967-2. Epub 2022 May 23.
10
Genetic Screening of Inactivation Mutants Identifies New Genes Involved in Macrophage-Fungal Cell Interactions.
Front Microbiol. 2022 Apr 5;13:833655. doi: 10.3389/fmicb.2022.833655. eCollection 2022.

本文引用的文献

1
Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly.
Mol Biol Cell. 2015 Sep 15;26(18):3245-62. doi: 10.1091/mbc.E15-06-0366. Epub 2015 Jul 15.
2
Is Fluconazole or an Echinocandin the Agent of Choice for Candidemia.
Ann Pharmacother. 2015 Sep;49(9):1068-74. doi: 10.1177/1060028015590838. Epub 2015 Jun 23.
3
Disruption of the transcriptional regulator Cas5 results in enhanced killing of Candida albicans by Fluconazole.
Antimicrob Agents Chemother. 2014 Nov;58(11):6807-18. doi: 10.1128/AAC.00064-14. Epub 2014 Sep 2.
4
Rho GTPase-phosphatidylinositol phosphate interplay in fungal cell polarity.
Biochem Soc Trans. 2014 Feb;42(1):206-11. doi: 10.1042/BST20130226.
5
Spatiotemporal regulation of Rho1 and Cdc42 activity during Candida albicans filamentous growth.
Mol Microbiol. 2013 Aug;89(4):626-48. doi: 10.1111/mmi.12302. Epub 2013 Jul 10.
6
Nanoscale effects of caspofungin against two yeast species, Saccharomyces cerevisiae and Candida albicans.
Antimicrob Agents Chemother. 2013 Aug;57(8):3498-506. doi: 10.1128/AAC.00105-13. Epub 2013 May 13.
8
Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans.
Eukaryot Cell. 2013 Feb;12(2):254-64. doi: 10.1128/EC.00278-12. Epub 2012 Dec 14.
9
ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients.
Clin Microbiol Infect. 2012 Dec;18 Suppl 7:19-37. doi: 10.1111/1469-0691.12039.
10
Caspofungin kills Candida albicans by causing both cellular apoptosis and necrosis.
Antimicrob Agents Chemother. 2013 Jan;57(1):326-32. doi: 10.1128/AAC.01366-12. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验