Suppr超能文献

p53 基因突变癌细胞病因学建模

Modeling the Etiology of p53-mutated Cancer Cells.

作者信息

Perez Ricardo E, Shen Hong, Duan Lei, Kim Reuben H, Kim Terresa, Park No-Hee, Maki Carl G

机构信息

From the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612 and.

The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry and David Geffen School of Medicine at UCLA, Los Angeles, California 90095.

出版信息

J Biol Chem. 2016 May 6;291(19):10131-47. doi: 10.1074/jbc.M116.724781. Epub 2016 Mar 28.

Abstract

p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds.

摘要

p53基因突变是癌症中最常见的改变之一。在大多数情况下,一个TP53等位基因中的错义突变之后会发生杂合性缺失(LOH),因此肿瘤仅表达突变型p53。在许多情况下,TP53突变和LOH与治疗反应不佳和预后较差有关。尽管如此,对于TP53点突变是如何获得的、LOH是如何发生的,或者涉及哪些细胞,人们所知甚少。Nutlin-3a占据MDM2中的p53结合位点,阻断p53-MDM2相互作用,导致p53的稳定和激活以及随后的生长停滞或凋亡。我们利用Nutlin-3a强大的生长抑制活性来筛选p53突变细胞,并研究TP53突变是如何产生的,以及剩余的野生型等位基因是如何丢失或失活的。错配修复(MMR)缺陷的结肠癌细胞在低剂量Nutlin-3a中培养时会形成杂合子(p53野生型/突变型)菌落,而MMR校正的对应细胞则不会。将这些杂合子置于更高剂量的Nutlin-3a中会筛选出剩余野生型TP53被沉默的克隆。我们的数据表明,沉默是通过一种不涉及DNA甲基化、组蛋白甲基化或组蛋白去乙酰化的新机制发生的。这些数据表明,结直肠癌中的MMR缺陷可导致起始TP53突变,并且TP53沉默是通过一种拷贝中性机制发生的。此外,这些数据突出了使用MDM2拮抗剂作为工具来研究具有明确遗传背景的细胞中TP53突变获得机制以及野生型等位基因丢失或沉默的机制。

相似文献

1
Modeling the Etiology of p53-mutated Cancer Cells.
J Biol Chem. 2016 May 6;291(19):10131-47. doi: 10.1074/jbc.M116.724781. Epub 2016 Mar 28.
3
Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3.
Oncogene. 2011 Nov 17;30(46):4678-86. doi: 10.1038/onc.2011.185. Epub 2011 Jun 6.
4
Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas.
PLoS One. 2015 Aug 6;10(8):e0135101. doi: 10.1371/journal.pone.0135101. eCollection 2015.
9
E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines.
Oncogene. 2008 Sep 11;27(40):5303-14. doi: 10.1038/onc.2008.164. Epub 2008 Jun 2.
10
Nutlin-3a selects for cells harbouring TP53 mutations.
Int J Cancer. 2017 Feb 15;140(4):877-887. doi: 10.1002/ijc.30504. Epub 2016 Nov 22.

引用本文的文献

1
RNA sequencing of long-term label-retaining colon cancer stem cells identifies novel regulators of quiescence.
iScience. 2021 May 24;24(6):102618. doi: 10.1016/j.isci.2021.102618. eCollection 2021 Jun 25.
2
Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin.
Blood Adv. 2020 Nov 24;4(22):5735-5744. doi: 10.1182/bloodadvances.2020002379.
3
Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma.
Mol Cell. 2020 Feb 6;77(3):633-644.e5. doi: 10.1016/j.molcel.2019.11.009. Epub 2019 Dec 11.

本文引用的文献

1
Regulation of p53 during senescence in normal human keratinocytes.
Aging Cell. 2015 Oct;14(5):838-46. doi: 10.1111/acel.12364. Epub 2015 Jul 1.
2
Milestones of Lynch syndrome: 1895-2015.
Nat Rev Cancer. 2015 Mar;15(3):181-94. doi: 10.1038/nrc3878. Epub 2015 Feb 12.
3
Colorectal cancer cells Caco-2 and HCT116 resist epigenetic effects of isothiocyanates and selenium in vitro.
Eur J Nutr. 2013 Jun;52(4):1327-41. doi: 10.1007/s00394-012-0442-1. Epub 2012 Aug 26.
4
Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8.
Oncogene. 2013 Jan 31;32(5):599-609. doi: 10.1038/onc.2012.81. Epub 2012 Mar 5.
6
MSH3 mediates sensitization of colorectal cancer cells to cisplatin, oxaliplatin, and a poly(ADP-ribose) polymerase inhibitor.
J Biol Chem. 2011 Apr 8;286(14):12157-65. doi: 10.1074/jbc.M110.198804. Epub 2011 Feb 1.
8
DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.
Mol Cancer Ther. 2009 Jun;8(6):1579-88. doi: 10.1158/1535-7163.MCT-09-0013. Epub 2009 Jun 9.
9
Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer.
Cancer Res. 2008 Oct 15;68(20):8465-72. doi: 10.1158/0008-5472.CAN-08-0002.
10
The genetics of hereditary colon cancer.
Genes Dev. 2007 Oct 15;21(20):2525-38. doi: 10.1101/gad.1593107.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验