Hill Maureen E, MacPherson Derek J, Wu Peng, Julien Olivier, Wells James A, Hardy Jeanne A
Department of Chemistry, 104 LGRT, 710 N. Pleasant St., University of Massachusetts , Amherst, Massachusetts 01003, United States.
ACS Chem Biol. 2016 Jun 17;11(6):1603-12. doi: 10.1021/acschembio.5b00971. Epub 2016 Mar 31.
The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.
常规设计蛋白酶特异性的能力可使我们更好地理解和调控其生物学特性,以拓展治疗和工业应用。在此,我们报道了一种基于笼化绿色荧光蛋白(CA-GFP)报告基因的新方法,该方法允许在细菌或其他细胞类型中基于流式细胞术进行筛选,从而能够选择细胞内蛋白酶的特异性,而无需考虑蛋白酶的组成复杂性。在此,我们应用这种方法将半胱天冬酶-6的特异性引入半胱天冬酶-7,半胱天冬酶-7是一种在细胞重塑和细胞死亡中起重要作用的细胞内半胱氨酸蛋白酶。我们发现,将半胱天冬酶-6中与底物接触的残基替换到半胱天冬酶-7中是无效的,会产生一种无活性的酶,而在这些位置进行饱和诱变并通过定向进化进行筛选则产生了活性半胱天冬酶。该过程产生了许多非显而易见的突变,这些突变能够使半胱天冬酶-7的特异性转变为与半胱天冬酶-6匹配。进化特异性半胱天冬酶-7(esCasp-7)的结构揭示了底物的交替结合模式,包括活性位点环的重新组织。通过N端蛋白质组学对esCasp-7的整个人类蛋白质组进行分析表明,其对天然蛋白质底物的整体特异性与半胱天冬酶-6非常相似。由于esCasp-7保留了半胱天冬酶-7的核心结构,我们能够鉴定出一种半胱天冬酶-6底物——核纤层蛋白C,我们预测它依赖于一个外部位点进行底物识别。这些重新编程的蛋白酶可能是首个专门为区分依赖外部位点或不依赖外部位点的底物而构建的工具。这种特异性重新编程的方法也应该能够广泛应用于多种蛋白酶。