Suppr超能文献

通过区域特异性突变和筛选对半胱天冬酶-7特异性进行重编程,为底物识别提供了替代解决方案。

Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition.

作者信息

Hill Maureen E, MacPherson Derek J, Wu Peng, Julien Olivier, Wells James A, Hardy Jeanne A

机构信息

Department of Chemistry, 104 LGRT, 710 N. Pleasant St., University of Massachusetts , Amherst, Massachusetts 01003, United States.

出版信息

ACS Chem Biol. 2016 Jun 17;11(6):1603-12. doi: 10.1021/acschembio.5b00971. Epub 2016 Mar 31.

Abstract

The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases.

摘要

常规设计蛋白酶特异性的能力可使我们更好地理解和调控其生物学特性,以拓展治疗和工业应用。在此,我们报道了一种基于笼化绿色荧光蛋白(CA-GFP)报告基因的新方法,该方法允许在细菌或其他细胞类型中基于流式细胞术进行筛选,从而能够选择细胞内蛋白酶的特异性,而无需考虑蛋白酶的组成复杂性。在此,我们应用这种方法将半胱天冬酶-6的特异性引入半胱天冬酶-7,半胱天冬酶-7是一种在细胞重塑和细胞死亡中起重要作用的细胞内半胱氨酸蛋白酶。我们发现,将半胱天冬酶-6中与底物接触的残基替换到半胱天冬酶-7中是无效的,会产生一种无活性的酶,而在这些位置进行饱和诱变并通过定向进化进行筛选则产生了活性半胱天冬酶。该过程产生了许多非显而易见的突变,这些突变能够使半胱天冬酶-7的特异性转变为与半胱天冬酶-6匹配。进化特异性半胱天冬酶-7(esCasp-7)的结构揭示了底物的交替结合模式,包括活性位点环的重新组织。通过N端蛋白质组学对esCasp-7的整个人类蛋白质组进行分析表明,其对天然蛋白质底物的整体特异性与半胱天冬酶-6非常相似。由于esCasp-7保留了半胱天冬酶-7的核心结构,我们能够鉴定出一种半胱天冬酶-6底物——核纤层蛋白C,我们预测它依赖于一个外部位点进行底物识别。这些重新编程的蛋白酶可能是首个专门为区分依赖外部位点或不依赖外部位点的底物而构建的工具。这种特异性重新编程的方法也应该能够广泛应用于多种蛋白酶。

相似文献

1
Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition.
ACS Chem Biol. 2016 Jun 17;11(6):1603-12. doi: 10.1021/acschembio.5b00971. Epub 2016 Mar 31.
2
Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis.
J Biol Chem. 2019 Jan 4;294(1):71-88. doi: 10.1074/jbc.RA118.005914. Epub 2018 Nov 12.
3
Specificity of a protein-protein interface: local dynamics direct substrate recognition of effector caspases.
Proteins. 2014 Apr;82(4):546-55. doi: 10.1002/prot.24417. Epub 2013 Oct 19.
4
Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme.
J Biol Chem. 2011 Sep 16;286(37):32513-24. doi: 10.1074/jbc.M111.225862. Epub 2011 Jul 11.
5
Proteome-wide substrate analysis indicates substrate exclusion as a mechanism to generate caspase-7 versus caspase-3 specificity.
Mol Cell Proteomics. 2009 Dec;8(12):2700-14. doi: 10.1074/mcp.M900310-MCP200. Epub 2009 Sep 16.
6
Plasticity of S2-S4 specificity pockets of executioner caspase-7 revealed by structural and kinetic analysis.
FEBS J. 2007 Sep;274(18):4752-65. doi: 10.1111/j.1742-4658.2007.05994.x. Epub 2007 Aug 14.
7
Engineering caspase 7 as an affinity reagent to capture proteolytic products.
FEBS J. 2021 Feb;288(4):1259-1270. doi: 10.1111/febs.15467. Epub 2020 Jul 11.
9
The catalytic subunit of human telomerase is a unique caspase-6 and caspase-7 substrate.
Biochemistry. 2011 Oct 25;50(42):9046-55. doi: 10.1021/bi2010398. Epub 2011 Sep 29.
10
Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25464-25475. doi: 10.1073/pnas.2009279117. Epub 2020 Sep 24.

引用本文的文献

1
Data-driven protease engineering by DNA-recording and epistasis-aware machine learning.
Nat Commun. 2025 Jul 1;16(1):5466. doi: 10.1038/s41467-025-60622-7.
2
General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model.
Mol Biol Evol. 2022 Nov 3;39(11). doi: 10.1093/molbev/msac217.
4
Making the cut with protease engineering.
Cell Chem Biol. 2022 Feb 17;29(2):177-190. doi: 10.1016/j.chembiol.2021.12.001. Epub 2021 Dec 17.
5
Evolution of the folding landscape of effector caspases.
J Biol Chem. 2021 Nov;297(5):101249. doi: 10.1016/j.jbc.2021.101249. Epub 2021 Sep 28.
6
Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling.
ACS Chem Biol. 2021 Nov 19;16(11):2280-2296. doi: 10.1021/acschembio.1c00456. Epub 2021 Sep 23.
7
Caspase-9 Activation of Procaspase-3 but Not Procaspase-6 Is Based on the Local Context of Cleavage Site Motifs and on Sequence.
Biochemistry. 2021 Sep 21;60(37):2824-2835. doi: 10.1021/acs.biochem.1c00459. Epub 2021 Sep 2.
8
Exogenous Introduction of Initiator and Executioner Caspases Results in Different Apoptotic Outcomes.
JACS Au. 2021 Jul 8;1(8):1240-1256. doi: 10.1021/jacsau.1c00261. eCollection 2021 Aug 23.
9
N-Terminomics Strategies for Protease Substrates Profiling.
Molecules. 2021 Aug 3;26(15):4699. doi: 10.3390/molecules26154699.

本文引用的文献

1
Reactive Self-Assembly of Polymers and Proteins to Reversibly Silence a Killer Protein.
Biomacromolecules. 2015 Oct 12;16(10):3161-71. doi: 10.1021/acs.biomac.5b00779. Epub 2015 Sep 10.
2
Co-delivery of protein and small molecule therapeutics using nanoparticle-stabilized nanocapsules.
Bioconjug Chem. 2015 May 20;26(5):950-4. doi: 10.1021/acs.bioconjchem.5b00146. Epub 2015 Apr 30.
4
Partial rescue of some features of Huntington Disease in the genetic absence of caspase-6 in YAC128 mice.
Neurobiol Dis. 2015 Apr;76:24-36. doi: 10.1016/j.nbd.2014.12.030. Epub 2015 Jan 9.
6
Engineering neprilysin activity and specificity to create a novel therapeutic for Alzheimer's disease.
PLoS One. 2014 Aug 4;9(8):e104001. doi: 10.1371/journal.pone.0104001. eCollection 2014.
7
Cerebrospinal fluid tau cleaved by caspase-6 reflects brain levels and cognition in aging and Alzheimer disease.
J Neuropathol Exp Neurol. 2013 Sep;72(9):824-32. doi: 10.1097/NEN.0b013e3182a0a39f.
8
Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules.
ACS Nano. 2013 Aug 27;7(8):6667-6673. doi: 10.1021/nn402753y. Epub 2013 Jul 8.
9
Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7229-34. doi: 10.1073/pnas.1215994110. Epub 2013 Apr 15.
10
A tunable, modular approach to fluorescent protease-activated reporters.
Biophys J. 2013 Apr 2;104(7):1605-14. doi: 10.1016/j.bpj.2013.01.058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验