Suppr超能文献

Jahn-Teller效应的相对论理论:四面体和三角体系中的p轨道

Relativistic theory of the Jahn-Teller effect: p-orbitals in tetrahedral and trigonal systems.

作者信息

Domcke Wolfgang, Opalka Daniel, Poluyanov Leonid V

机构信息

Department of Chemistry, Technische Universität München, D-85747 Garching, Germany.

Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.

出版信息

J Chem Phys. 2016 Mar 28;144(12):124101. doi: 10.1063/1.4943863.

Abstract

A relativistic generalization of Jahn-Teller theory is presented which includes spin-orbit coupling effects beyond low-order Taylor expansions in vibrational coordinates. For the example of a p-electron in tetrahedral and trigonal environments, the matrix elements of the Breit-Pauli spin-orbit-coupling operator are expressed in terms of the matrix elements of the electrostatic electronic potential. Employing expansions of the latter in invariant polynomials in symmetry-adapted nuclear coordinates, the spin-orbit induced Jahn-Teller coupling terms are derived for the T2 × (t2 + e) and (E + A) × (e + a) Jahn-Teller problems up to arbitrarily high orders. The linear G3/2 × (t2 + e) Jahn-Teller Hamiltonian of Moffitt and Thorson [Phys. Rev. 108, 1251 (1957)] for tetrahedral systems is generalized to higher orders in vibrational displacements. The Jahn-Teller Hamiltonians derived in the present work are useful for the interpolation and extrapolation of Jahn-Teller distorted potential-energy surfaces of molecules and complexes with heavy elements as well as for the calculation of vibronic spectra of such systems.

摘要

本文提出了一种相对论性的 Jahn-Teller 理论推广,其中包括超出振动坐标低阶泰勒展开的自旋轨道耦合效应。以四面体和三角环境中的 p 电子为例,Breit-Pauli 自旋轨道耦合算符的矩阵元用静电电子势的矩阵元表示。利用后者在对称适配核坐标中的不变多项式展开,推导出了 T2 × (t2 + e) 和 (E + A) × (e + a) Jahn-Teller 问题的自旋轨道诱导 Jahn-Teller 耦合项,直至任意高阶。Moffitt 和 Thorson [《物理评论》108, 1251 (1957)] 针对四面体系统的线性 G3/2 × (t2 + e) Jahn-Teller 哈密顿量被推广到振动位移的高阶项。本文推导的 Jahn-Teller 哈密顿量对于具有重元素的分子和配合物的 Jahn-Teller 畸变势能面的插值和外推以及此类系统的振转光谱计算很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验