Vonshak Avigad, Novoplansky Nurit
Microalgal Biotechnology Laboratory, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker Campus, 84990 Israel.
J Phycol. 2008 Aug;44(4):1071-9. doi: 10.1111/j.1529-8817.2008.00546.x. Epub 2008 Jul 24.
This study aimed to compare the ability of two Arthrospira platensis (Nordst.) Gomont strains, M2 and Kenya, isolated from two different habitats, to acclimate to low temperature (15°C). Both strains had similar growth rates at 30°C, but once acclimated to low temperature, M2 showed a greater decline in growth (59% vs. 41% in the Kenya strain). We suggest that the Kenya strain acclimated better to low temperature by down-regulating its photosynthetic activity through (i) decreasing antenna size and thus reducing energy flux into the photosystems; (ii) decreasing reaction center density (RC/CSX ) and the performance index, thus decreasing the trapping probability and electron transport rate while maintaining electron transport probability for electron transport beyond QA (-) unchanged; (iii) increasing the energy dissipation flux. In contrast, the M2 strain showed no difference in antenna size and exhibited a much lower decrease in RC/CSX and a lower dissipation rate. Hence, the Kenya strain minimized potential damage on the acceptor side of PSII compared to the M2 cells. Furthermore, acclimation to low temperature was accompanied by an improved mechanism for handling excess energy resulting in an enhanced ability of the Kenya strain to rapidly repair damaged PSII RCs and withstand a high photon flux density (HPFD) stress; this finding might be defined as a cross-adaptation phenomenon. This study may provide a tool to identify strains suitable for outdoor mass-production in different regions characterized by different climate conditions.
本研究旨在比较从两个不同生境分离得到的两株钝顶螺旋藻(Arthrospira platensis (Nordst.) Gomont),即M2和肯尼亚株,对低温(15°C)的适应能力。两株藻在30°C时生长速率相似,但一旦适应低温,M2的生长下降幅度更大(59%,而肯尼亚株为41%)。我们认为,肯尼亚株通过以下方式更好地适应低温:下调其光合活性,即(i)减小天线大小,从而减少进入光系统的能量通量;(ii)降低反应中心密度(RC/CSX)和性能指数,从而降低捕获概率和电子传递速率,同时保持QA(-)之后电子传递的电子传递概率不变;(iii)增加能量耗散通量。相比之下,M2株在天线大小上没有差异,且RC/CSX的下降幅度小得多,耗散率也较低。因此,与M2细胞相比,肯尼亚株将PSII受体侧的潜在损伤降至最低。此外,适应低温伴随着处理过剩能量机制的改善,导致肯尼亚株快速修复受损PSII反应中心和耐受高光通量密度(HPFD)胁迫能力增强;这一发现可定义为交叉适应现象。本研究可为鉴定适合在具有不同气候条件的不同地区进行室外大规模生产的藻株提供一种工具。