IEEE Trans Cybern. 2017 May;47(5):1169-1179. doi: 10.1109/TCYB.2016.2539338. Epub 2016 Mar 24.
In a Bayesian network (BN), a target node is independent of all other nodes given its Markov blanket (MB), and finding the MB has many applications, including feature selection and BN structure learning. We propose a new MB discovery algorithm, simultaneous MB (STMB), to improve the efficiency of the existing topology-based MB discovery algorithms. The proposed method removes the necessity of enforcing the symmetry constraint that is prevalent in existing algorithms, by exploiting the coexisting property between spouses and descendants of the target node. Since STMB mainly reduces the number of independence tests needed to complete the MB set after finding the parents-and-children set, it is applicable to all previous topology-based methods. STMB is both sound and complete. Experiments show that STMB has a comparable accuracy but much better efficiency than state-of-the-art methods. An application on benchmark feature selection datasets further demonstrates the excellent performance of STMB.
在贝叶斯网络 (BN) 中,给定目标节点的 Markov 毯子 (MB),则该目标节点与所有其他节点独立,而发现 MB 有许多应用,包括特征选择和 BN 结构学习。我们提出了一种新的 MB 发现算法,即同时 MB(STMB),以提高基于拓扑的现有 MB 发现算法的效率。该方法通过利用目标节点的配偶和后代之间共存的特性,消除了现有算法中普遍存在的强制对称约束的必要性。由于 STMB 主要减少了在找到父母子女集后完成 MB 集所需的独立性测试的数量,因此它适用于所有以前的基于拓扑的方法。STMB 是健全和完整的。实验表明,STMB 的准确性相当,但效率比最先进的方法要好得多。在基准特征选择数据集上的应用进一步证明了 STMB 的出色性能。