Chemistry Department, 2036 Main Mall, University of British Columbia , Vancouver, BC V6T 1Z1, Canada.
Acc Chem Res. 2016 Jul 19;49(7):1333-43. doi: 10.1021/acs.accounts.5b00398. Epub 2016 Apr 7.
Positron emission tomography (PET) is revolutionizing our ability to visualize in vivo targets for target validation and personalized medicine. Of several classes of imaging agents, peptides afford high affinity and high specificity to distinguish pathologically distinct cell types by the presence of specific molecular targets. Of various available PET isotopes, [(18)F]-fluoride ion is preferred because of its excellent nuclear properties and on-demand production in hospitals at Curie levels. However, the short half-life of (18)F and its lack of reactivity in water continue to challenge peptide labeling. Hence, peptides are often conjugated to a metal chelator for late-stage, one-step labeling. Yet radiometals, while effective, are neither as desirable nor as available as [(18)F]-fluoride ion. Despite considerable past success in identifying semifeasible radiosyntheses, significant challenges continue to confound tracer development. These interrelated challenges relate to (1) isotope/prosthetic choice; (2) bioconjugation for high affinity; (3) high radiochemical yields, (4) specific activities of >1 Ci/μmol to meet FDA microdose requirements; and (5) rapid clearance and in vivo stability. These enduring challenges have been extensively highlighted, while a single-step, operationally simple, and generally applicable means of labeling a peptide with [(18)F]-fluoride ion in good yield and high specific activity has eluded radiochemists and nuclear medicine practitioners for decades. Radiosynthetic ease is of primordial importance since multistep labeling reactions challenge clinical tracer production. In the past decade, as we sought to meet this challenge, appreciation of reactions with aqueous fluoride led us to consider organotrifluoroborate (RBF3(-)) synthesis as a means of rapid aqueous peptide labeling. We have applied principles of mechanistic chemistry, knowledge of chemical reactivity, and synthetic chemistry to design stable RBF3(-)s. Over the past 10 years, we have developed several new [(18)F]-RBF3(-) radioprosthetic groups, all of which guarantee radiosynthetic ease while in most cases providing high tumor:nontumor (T:NT) ratios and moderate-to-high tumor uptake. Although others have developed methods for labeling of peptides with [(18)F]-silylfluorides or [(18)F]-Al-NOTA chelates, this Account focuses on the synthesis of [(18)F]-organotrifluoroborates. In this Account, I detail mechanistic, kinetic, thermodynamic, synthetic, and radiosynthetic approaches that enabled the translation of fundamental principles regarding the chemistry of RBF3(-)s into a tantalizingly close realization of a clinical application of an [(18)F]-organotrifluoroborate-peptide conjugate for imaging of neuroendocrine tumors and the generalization of this method for labeling of several other peptides.
正电子发射断层扫描(PET)正在彻底改变我们可视化体内靶标以进行靶标验证和个体化医学的能力。在几种成像剂中,肽能够通过存在特定的分子靶标,提供高亲和力和高特异性来区分病理上不同的细胞类型。在各种可用的 PET 同位素中,[(18)F]-氟化物离子因其优异的核性质和在居里水平的医院按需生产而受到青睐。然而,(18)F 的半衰期短且在水中的反应性差,这仍然是肽标记的挑战。因此,肽通常与金属螯合剂连接,以便进行后期、一步标记。然而,放射性金属虽然有效,但不如[(18)F]-氟化物离子理想,也不如其可用。尽管在确定半可行的放射合成方面取得了相当大的成功,但仍存在重大挑战,这继续困扰着示踪剂的开发。这些相互关联的挑战涉及:(1)同位素/前体选择;(2)用于高亲和力的生物偶联;(3)高放射化学产率;(4)每个微摩尔大于 1 居里的比活度,以满足 FDA 微剂量要求;以及 (5)快速清除和体内稳定性。这些持久的挑战已经得到了广泛的强调,而一种用于用 [(18)F]-氟化物离子以高产率和高比活度标记肽的单步、操作简单且普遍适用的方法,几十年来一直困扰着放射化学家核医学从业者。放射合成的容易性至关重要,因为多步标记反应挑战了临床示踪剂的生产。在过去的十年中,为了应对这一挑战,我们对与水合氟化物的反应的认识促使我们考虑将有机三氟硼酸盐(RBF3(-))合成作为一种快速水肽标记的方法。我们将反应机制化学、化学反应性知识和合成化学应用于设计稳定的 RBF3(-)。在过去的十年中,我们开发了几种新的 [(18)F]-RBF3(-)放射前体基团,所有这些基团都保证了放射合成的容易性,同时在大多数情况下提供了高肿瘤:非肿瘤(T:NT)比值和中等至高的肿瘤摄取。尽管其他人已经开发了用 [(18)F]-硅基氟化物或 [(18)F]-Al-NOTA 螯合物标记肽的方法,但本报告侧重于 [(18)F]-有机三氟硼酸盐的合成。在本报告中,我详细介绍了机制、动力学、热力学、合成和放射合成方法,这些方法使我们能够将关于 RBF3(-)化学的基本原理转化为神经内分泌肿瘤成像的 [(18)F]-有机三氟硼酸盐-肽缀合物临床应用的诱人实现,并将该方法推广到标记几种其他肽。