Wong Kin Yau, Goldberg Yair, Fine Jason P
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A.
Department of Statistics, University of Haifa, Haifa 31905, Israel.
Biometrics. 2016 Dec;72(4):1173-1183. doi: 10.1111/biom.12520. Epub 2016 Apr 8.
In many classical estimation problems, the parameter space has a boundary. In most cases, the standard asymptotic properties of the estimator do not hold when some of the underlying true parameters lie on the boundary. However, without knowledge of the true parameter values, confidence intervals constructed assuming that the parameters lie in the interior are generally over-conservative. A penalized estimation method is proposed in this article to address this issue. An adaptive lasso procedure is employed to shrink the parameters to the boundary, yielding oracle inference which adapt to whether or not the true parameters are on the boundary. When the true parameters are on the boundary, the inference is equivalent to that which would be achieved with a priori knowledge of the boundary, while if the converse is true, the inference is equivalent to that which is obtained in the interior of the parameter space. The method is demonstrated under two practical scenarios, namely the frailty survival model and linear regression with order-restricted parameters. Simulation studies and real data analyses show that the method performs well with realistic sample sizes and exhibits certain advantages over standard methods.
在许多经典估计问题中,参数空间存在边界。在大多数情况下,当一些潜在的真实参数位于边界上时,估计量的标准渐近性质不成立。然而,在不知道真实参数值的情况下,假设参数位于内部构建的置信区间通常过于保守。本文提出了一种惩罚估计方法来解决这个问题。采用自适应套索程序将参数收缩到边界,产生适应真实参数是否在边界上的神谕推断。当真实参数在边界上时,推断等同于已知边界先验知识时所得到的推断,而如果情况相反,推断等同于在参数空间内部所得到的推断。该方法在两种实际场景下进行了演示,即脆弱生存模型和具有序约束参数的线性回归。模拟研究和实际数据分析表明,该方法在实际样本量下表现良好,并且相对于标准方法具有一定优势。