Suppr超能文献

自闭症、线粒体与多溴二苯醚暴露

Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure.

作者信息

Wong Sarah, Giulivi Cecilia

机构信息

University of California, Department of Molecular Biosciences, 1089 Veterinary Medicine Dr., 3009 VetMed3B, Davis, CA 95616, USA.

出版信息

CNS Neurol Disord Drug Targets. 2016;15(5):614-23. doi: 10.2174/1871527315666160413122624.

Abstract

BACKGROUND

Autism spectrum disorders (ASD) are a growing concern with more than 1 in every 68 children affected in the United States by age 8. Limited scientific advances have been made regarding the etiology of autism, with general agreement that both genetic and environmental factors contribute to this disorder.

OBJECTIVE

To explore the link between exposure to PBDE, mitochondrial dysfunction and autism risk.

RESULTS

Perinatal exposures to PBDEs may contribute to the etiology or morbidity of ASD including mitochondrial dysfunction based on (i) their increased environmental abundance and human exposures, (ii) their activity towards implicated in neuronal development and synaptic plasticity including mitochondria, and (iii) their bioaccumulation in mitochondria.

CONCLUSION

In this review, we propose that PBDE, and possibly other environmental exposures, during child development can induce or compound mitochondrial dysfunction, which in conjunction with a dysregulated antioxidant response, increase a child's susceptibility of autism.

摘要

背景

自闭症谱系障碍(ASD)日益受到关注,在美国每68名8岁儿童中就有超过1人受其影响。关于自闭症的病因,科学进展有限,人们普遍认为遗传和环境因素都与这种疾病有关。

目的

探讨接触多溴二苯醚、线粒体功能障碍与自闭症风险之间的联系。

结果

围产期接触多溴二苯醚可能导致ASD的病因或发病,包括线粒体功能障碍,基于以下几点:(i)它们在环境中的丰度增加以及人类接触增加;(ii)它们对包括线粒体在内的神经元发育和突触可塑性的影响;(iii)它们在线粒体中的生物蓄积。

结论

在本综述中,我们提出在儿童发育过程中,多溴二苯醚以及可能的其他环境暴露可诱导或加重线粒体功能障碍,这与抗氧化反应失调一起,增加了儿童患自闭症的易感性。

相似文献

1
Autism, Mitochondria and Polybrominated Diphenyl Ether Exposure.
CNS Neurol Disord Drug Targets. 2016;15(5):614-23. doi: 10.2174/1871527315666160413122624.
2
Exposure to polybrominated diphenyl ethers (PBDEs) and child behavior: Current findings and future directions.
Horm Behav. 2018 May;101:94-104. doi: 10.1016/j.yhbeh.2017.11.008. Epub 2017 Dec 7.
4
Prenatal and childhood polybrominated diphenyl ether (PBDE) exposure and attention and executive function at 9-12 years of age.
Neurotoxicol Teratol. 2015 Nov-Dec;52(Pt B):151-61. doi: 10.1016/j.ntt.2015.08.001. Epub 2015 Aug 10.
5
Mini-review: polybrominated diphenyl ether (PBDE) flame retardants as potential autism risk factors.
Physiol Behav. 2010 Jun 1;100(3):245-9. doi: 10.1016/j.physbeh.2010.01.011. Epub 2010 Jan 25.
6
Developmental PBDE Exposure and IQ/ADHD in Childhood: A Systematic Review and Meta-analysis.
Environ Health Perspect. 2017 Aug 3;125(8):086001. doi: 10.1289/EHP1632.
7
Clinical and Molecular Characteristics of Mitochondrial Dysfunction in Autism Spectrum Disorder.
Mol Diagn Ther. 2018 Oct;22(5):571-593. doi: 10.1007/s40291-018-0352-x.
8
Neonatal and regressive forms of autism: Diseases with similar symptoms but a different etiology.
Med Hypotheses. 2017 Nov;109:46-52. doi: 10.1016/j.mehy.2017.09.015. Epub 2017 Sep 20.
9
Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments.
Semin Pediatr Neurol. 2020 Oct;35:100829. doi: 10.1016/j.spen.2020.100829. Epub 2020 Jun 23.
10
Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis.
Neurobiol Dis. 2024 Jul;197:106520. doi: 10.1016/j.nbd.2024.106520. Epub 2024 May 3.

引用本文的文献

6
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder.
J Mol Neurosci. 2018 Dec;66(4):492-511. doi: 10.1007/s12031-018-1192-1. Epub 2018 Oct 24.

本文引用的文献

1
The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders.
Nutr Neurosci. 2017 May;20(4):209-218. doi: 10.1080/1028415X.2015.1103437. Epub 2015 Nov 27.
2
Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation.
Curr Opin Immunol. 2015 Oct;36:73-9. doi: 10.1016/j.coi.2015.07.002. Epub 2015 Jul 23.
3
Epigenetics of autism-related impairment: copy number variation and maternal infection.
J Dev Behav Pediatr. 2015 Feb-Mar;36(2):61-7. doi: 10.1097/DBP.0000000000000126.
4
Maternal immune activation and abnormal brain development across CNS disorders.
Nat Rev Neurol. 2014 Nov;10(11):643-60. doi: 10.1038/nrneurol.2014.187. Epub 2014 Oct 14.
5
Maternal intake of supplemental iron and risk of autism spectrum disorder.
Am J Epidemiol. 2014 Nov 1;180(9):890-900. doi: 10.1093/aje/kwu208. Epub 2014 Sep 22.
6
Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders.
Brain Behav Immun. 2015 Feb;44:100-5. doi: 10.1016/j.bbi.2014.09.001. Epub 2014 Sep 16.
7
Adaptive maternal immune deviations as a ground for autism spectrum disorders development in children.
Folia Med (Plovdiv). 2014 Apr-Jun;56(2):73-80. doi: 10.2478/folmed-2014-0011.
8
Potential therapeutic use of the ketogenic diet in autism spectrum disorders.
Front Pediatr. 2014 Jun 30;2:69. doi: 10.3389/fped.2014.00069. eCollection 2014.
9
Additive effects of maternal iron deficiency and prenatal immune activation on adult behaviors in rat offspring.
Brain Behav Immun. 2014 Aug;40:27-37. doi: 10.1016/j.bbi.2014.06.005. Epub 2014 Jun 12.
10
Deficits in bioenergetics and impaired immune response in granulocytes from children with autism.
Pediatrics. 2014 May;133(5):e1405-10. doi: 10.1542/peds.2013-1545.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验