Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India.
Phys Rev E. 2016 Mar;93(3):032209. doi: 10.1103/PhysRevE.93.032209. Epub 2016 Mar 7.
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
我们考虑处于均匀稳定稳态的反应-扩散系统。通过对合适标度参数的时变正弦激励进行微扰,系统在超过临界阈值频率时表现出参数时空不稳定性。我们制定了一个通用的方案来计算振荡的阈值条件和位于类似于阿诺德舌的 V 形区域内的不稳定空间模式的范围。全数值模拟表明,取决于模型的非线性的具体特性,不稳定性可能导致以驻波簇或具有特征波长的空间局域呼吸模式的形式出现的时间周期稳定模式。我们对反应-扩散系统中的参数振荡的理论分析得到了两个著名的化学动力模型的全数值模拟的证实:亚氯酸盐-碘-丙二酸和布里格斯-劳斯彻反应。