Adams Marcus P
Department of Philosophy, University at Albany, SUNY, HU 257, Albany, NY 12222, USA.
Stud Hist Philos Sci. 2016 Apr;56:43-51. doi: 10.1016/j.shpsa.2015.10.010. Epub 2015 Dec 11.
In this paper, I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the 'that') with causal principles from geometry (the 'why'). My argument shows that Hobbesian natural philosophy relies upon suppositions that bodies plausibly behave according to these borrowed causal principles from geometry, acknowledging that bodies in the world may not actually behave this way. First, I consider Hobbes's relation to Aristotelian mixed mathematics and to Isaac Barrow's broadening of mixed mathematics in Mathematical Lectures (1683). I show that for Hobbes maker's knowledge from geometry provides the 'why' in mixed-mathematical explanations. Next, I examine two explanations from De corpore Part IV: (1) the explanation of sense in De corpore 25.1-2; and (2) the explanation of the swelling of parts of the body when they become warm in De corpore 27.3. In both explanations, I show Hobbes borrowing and citing geometrical principles and mixing these principles with appeals to experience.
在本文中,我提出了一种关于霍布斯几何学与自然哲学关系的不同解释,认为混合数学为霍布斯提供了一种思考两者关系的模式。在混合数学中,人们可以从一门科学借用因果原理,并将其应用于另一门科学,而这两门科学之间不存在演绎关系。对霍布斯来说,自然哲学是混合的,因为一种解释可能会将来自经验的观察(“事实”)与来自几何学的因果原理(“原因”)结合起来。我的论证表明,霍布斯的自然哲学依赖于这样一种假设,即物体可能按照从几何学借用的这些因果原理来表现,同时承认世界上的物体实际上可能并非如此表现。首先,我考察霍布斯与亚里士多德的混合数学以及艾萨克·巴罗在《数学讲座》(1683年)中对混合数学的拓展之间的关系。我表明,对霍布斯来说,几何学中的制作者知识在混合数学解释中提供了“原因”。接下来,我研究《利维坦》第四部分中的两种解释:(1)《利维坦》25.1 - 2中对感觉的解释;(2)《利维坦》27.3中对身体部分受热时肿胀的解释。在这两种解释中,我都展示了霍布斯借用并引用几何原理,并将这些原理与对经验的诉求相结合。