Vall-Llaura Núria, Reverter-Branchat Gemma, Vived Celia, Weertman Naomi, Rodríguez-Colman María José, Cabiscol Elisa
Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.
Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.
Free Radic Biol Med. 2016 Jul;96:45-56. doi: 10.1016/j.freeradbiomed.2016.04.008. Epub 2016 Apr 13.
The regulatory mechanisms of yeast Sir2, the founding member of the sirtuin family involved in oxidative stress and aging, are unknown. Redox signaling controls many cellular functions, especially under stress situations, with dithiol glutaredoxins (Grxs) playing an important role. However, monothiol Grxs are not considered to have major oxidoreductase activity. The present study investigated the redox regulation of yeast Sir2, together with the role and physiological impact of monothiol Grx3/4 as Sir2 thiol-reductases upon stress. S-glutathionylation of Sir2 upon disulfide stress was demonstrated both in vitro and in vivo, and decreased Sir2 deacetylase activity. Physiological levels of nuclear Grx3/4 can reverse the observed post-translational modification. Grx3/4 interacted with Sir2 and reduced it after stress, thereby restoring telomeric silencing activity. Using site-directed mutagenesis, key cysteine residues at the catalytic domain of Sir2 were identified as a target of S-glutathionylation. Mutation of these residues resulted in cells with increased resistance to disulfide stress. We provide new mechanistic insights into Grx3/4 regulation of Sir2 by S-deglutathionylation to increase cell resistance to stress. This finding offers news perspectives on monothiol Grxs in redox signaling, describing Sir2 as a physiological substrate regulated by S-glutathionylation. These results might have a relevant role in understanding aging and age-related diseases.
酵母Sir2是参与氧化应激和衰老的沉默调节蛋白家族的创始成员,其调节机制尚不清楚。氧化还原信号控制着许多细胞功能,尤其是在应激情况下,二硫醇谷氧还蛋白(Grxs)发挥着重要作用。然而,单硫醇Grxs不被认为具有主要的氧化还原酶活性。本研究调查了酵母Sir2的氧化还原调节,以及单硫醇Grx3/4作为Sir2硫醇还原酶在应激时的作用和生理影响。在体外和体内均证实了二硫键应激时Sir2的S-谷胱甘肽化,并降低了Sir2的脱乙酰酶活性。细胞核中Grx3/4的生理水平可以逆转观察到的翻译后修饰。Grx3/4与Sir2相互作用,并在应激后使其还原,从而恢复端粒沉默活性。通过定点诱变,确定了Sir2催化结构域的关键半胱氨酸残基是S-谷胱甘肽化的靶点。这些残基的突变导致细胞对二硫键应激的抗性增加。我们提供了关于Grx3/4通过S-去谷胱甘肽化调节Sir2以增加细胞对应激抗性的新机制见解。这一发现为氧化还原信号中的单硫醇Grxs提供了新的视角,将Sir2描述为一种受S-谷胱甘肽化调节的生理底物。这些结果可能在理解衰老和与年龄相关的疾病方面具有相关作用。