Verheugd Patricia, Bütepage Mareike, Eckei Laura, Lüscher Bernhard
Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstraße 30, 52057 Aachen, Germany.
.
Curr Protein Pept Sci. 2016;17(7):654-667. doi: 10.2174/1389203717666160419144846.
ADP-ribosylation describes an ancient and highly conserved posttranslational modification (PTM) of proteins. Many cellular processes have been identified that are regulated by ADP-ribosylation, including DNA repair, gene transcription and signaling processes. Enzymes catalyzing ADP-ribosylation use NAD+ as a cofactor to transfer ADP-ribose to a substrate under release of nicotinamide. In mammals extracellular and intracellular enzymes have been described. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs) and some Sirtuins. Extracellular and intracellular ARTs belong to the cholera toxin-like (ARTC) and the diphtheria toxin-like (ARTD) subclass, respectively. ARTDs can be further subdivided depending on their ability to either generate poly-ADP-ribose chains, or to mono-ADP-ribosylate substrates. Similar to the latter, ARTCs and Sirtuins are restricted to mono-ADP-ribosylation. Recent findings have provided information about the functional consequences of ADP-ribosylation. Analogous to other PTMs, ADP-ribosylation can exert allosteric effects on enzymes, thereby controlling their catalytic activity. Moreover, this PTM can be read by multiple protein motifs and domains mediating protein-protein interactions. Typically these readers can distinguish between mono- and poly-ADP-ribosylation. Furthermore, with the description of proteins that can erase ADP-ribosylation, this posttranslational modification is fully reversible and thus provides an additional mechanism to transiently control protein functions and networks. In this review we will describe the most recent findings on motifs and domains that are related to ADP-ribosylation processes with a particular focus on readers and erasers. These new findings provide evidence for broad functional roles of ADP-ribosylation and a high diversity of mechanisms that contribute to the downstream consequences of this modification.
ADP核糖基化描述了一种古老且高度保守的蛋白质翻译后修饰(PTM)。现已确定许多细胞过程受ADP核糖基化调控,包括DNA修复、基因转录和信号传导过程。催化ADP核糖基化的酶利用NAD⁺作为辅因子,在释放烟酰胺的情况下将ADP核糖转移至底物。在哺乳动物中,已描述了细胞外和细胞内的酶。ADP核糖基化由ADP核糖基转移酶(ARTs)和一些沉默调节蛋白催化。细胞外和细胞内的ARTs分别属于霍乱毒素样(ARTC)和白喉毒素样(ARTD)亚类。ARTDs可根据其生成多聚ADP核糖链或单ADP核糖基化底物的能力进一步细分。与后者类似,ARTCs和沉默调节蛋白仅限于单ADP核糖基化。最近的研究结果提供了有关ADP核糖基化功能后果的信息。与其他PTM类似,ADP核糖基化可对酶产生变构效应,从而控制其催化活性。此外,这种PTM可被多种介导蛋白质-蛋白质相互作用的蛋白质基序和结构域识别。通常,这些识别蛋白可区分单ADP核糖基化和多聚ADP核糖基化。此外,随着能够去除ADP核糖基化的蛋白质的发现,这种翻译后修饰是完全可逆的,因此提供了一种额外机制来瞬时控制蛋白质功能和网络。在本综述中,我们将描述与ADP核糖基化过程相关的基序和结构域的最新研究结果,特别关注识别蛋白和去修饰酶。这些新发现为ADP核糖基化的广泛功能作用以及导致这种修饰下游后果的高度多样的机制提供了证据。