Suppr超能文献

十二烷基硫酸钠吸附对单壁碳纳米管内水行为的耗散粒子动力学模拟研究

Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

作者信息

Vo Minh D, Papavassiliou Dimitrios V

机构信息

School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019-1004, USA.

出版信息

Molecules. 2016 Apr 15;21(4):500. doi: 10.3390/molecules21040500.

Abstract

Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

摘要

采用耗散粒子动力学(DPD)模拟研究了十二烷基硫酸钠(SDS)在单壁扶手椅型碳纳米管(SWCNT)内部的吸附能力,以及表面活性剂对SWCNT内部水性质的影响。SWCNT的直径在1至5纳米之间变化。计算了SWCNT内部水的径向和轴向密度分布,并与已发表的分子动力学结果进行了比较。还计算了平均停留时间和扩散系数,以显示尺寸对SWCNT内部水迁移率的影响。结果发现,直径小于3纳米的纳米管不允许SDS分子进入SWCNT空间。对于直径较大的SWCNT,SDS吸附在纳米管内外。当SDS吸附在SWCNT的中空部分时,发现纳米管内部水的行为发生了显著变化。SWCNT内部水的径向和轴向密度分布都强烈波动,且与体相中的不同。此外,SDS分子增加了SWCNT(d≥3nm)内部水珠的保留率,同时水的扩散系数降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b641/6273545/11088d4cb4d4/molecules-21-00500-g001.jpg

相似文献

2
Experimental Information on the Adsorbed Phase of Water Formed in the Inner Pore of Single-Walled Carbon Nanotube Itself.
Langmuir. 2016 Feb 2;32(4):1058-64. doi: 10.1021/acs.langmuir.5b04222. Epub 2016 Jan 21.
3
Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
Environ Pollut. 2018 Dec;243(Pt A):206-217. doi: 10.1016/j.envpol.2018.08.059. Epub 2018 Aug 24.
4
Probing carbon nanotube-surfactant interactions with two-dimensional DOSY NMR.
J Am Chem Soc. 2013 May 8;135(18):6750-3. doi: 10.1021/ja312235n. Epub 2013 Feb 8.
6
Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations.
ACS Nano. 2010 Dec 28;4(12):7193-204. doi: 10.1021/nn101929f. Epub 2010 Dec 3.
7
Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.
Langmuir. 2012 Jan 17;28(2):1309-21. doi: 10.1021/la204067d. Epub 2012 Jan 3.
8
Carbon dioxide adsorption on a modified zeolite with sodium dodecyl sulfate surfactants: A molecular dynamics study.
J Mol Graph Model. 2019 Nov;92:243-248. doi: 10.1016/j.jmgm.2019.08.003. Epub 2019 Aug 9.
9
Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells.
Arch Pharm Res. 2011 Apr;34(4):661-9. doi: 10.1007/s12272-011-0417-4. Epub 2011 May 5.

本文引用的文献

2
A carbon nanotube wall membrane for water treatment.
Nat Commun. 2015 May 14;6:7109. doi: 10.1038/ncomms8109.
4
Barriers to superfast water transport in carbon nanotube membranes.
Nano Lett. 2013 May 8;13(5):1910-4. doi: 10.1021/nl304000k. Epub 2013 Apr 12.
5
Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion.
J Phys Chem B. 2011 Oct 27;115(42):12145-9. doi: 10.1021/jp205877b. Epub 2011 Sep 30.
6
The effects of confinement inside carbon nanotubes on catalysis.
Acc Chem Res. 2011 Aug 16;44(8):553-62. doi: 10.1021/ar100160t. Epub 2011 Jun 27.
9
Wrapping nanotubes with micelles, hemimicelles, and cylindrical micelles.
Small. 2009 Oct;5(19):2191-8. doi: 10.1002/smll.200900528.
10
Water flow in carbon nanotubes: transition to subcontinuum transport.
Phys Rev Lett. 2009 May 8;102(18):184502. doi: 10.1103/PhysRevLett.102.184502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验