Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
J Am Chem Soc. 2016 May 4;138(17):5594-602. doi: 10.1021/jacs.6b00248. Epub 2016 Apr 20.
A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 μbar), but, importantly, also exhibits readily reversible CO binding. Fe-BTTri utilizes a unique spin state change mechanism to bind CO in which the coordinatively unsaturated, high-spin Fe(II) centers of the framework convert to octahedral, low-spin Fe(II) centers upon CO coordination. Desorption of CO converts the Fe(II) sites back to a high-spin ground state, enabling the facile regeneration and recyclability of the material. This spin state change is supported by characterization via infrared spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, and magnetic susceptibility measurements. Importantly, the spin state change is selective for CO and is not observed in the presence of other gases, such as H2, N2, CO2, CH4, or other hydrocarbons, resulting in unprecedentedly high selectivities for CO adsorption for use in CO/H2, CO/N2, and CO/CH4 separations and in preferential CO adsorption over typical strongly adsorbing gases like CO2 and ethylene. While adsorbate-induced spin state transitions are well-known in molecular chemistry, particularly for CO, to our knowledge this is the first time such behavior has been observed in a porous material suitable for use in a gas separation process. Potentially, this effect can be extended to selective separations involving other π-acids.
一种新的金属-有机骨架材料,Fe-BTTri(Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH,H3BTTri =1,3,5-三(1H-1,2,3-三唑-5-基)苯)),被发现对各种其他气体分子的 CO 吸附具有高度选择性,使其非常有效,例如,从含有 H2、N2 和 CH4 的混合物中去除痕量 CO。该骨架不仅在非常低的压力下(在 100 μbar 时仅为 1.45 mmol/g)显示出显著的 CO 吸附能力,而且重要的是,还表现出易于可逆的 CO 结合。Fe-BTTri 利用独特的自旋状态变化机制来结合 CO,其中骨架的配位不饱和、高自旋 Fe(II)中心在 CO 配位时转化为八面体、低自旋 Fe(II)中心。CO 的解吸将 Fe(II)位点转回高自旋基态,从而使材料易于再生和可循环使用。这种自旋状态变化通过红外光谱、单晶 X 射线分析、穆斯堡尔光谱和磁化率测量得到了表征。重要的是,自旋状态变化对 CO 具有选择性,在存在其他气体(如 H2、N2、CO2、CH4 或其他碳氢化合物)时不会观察到,这导致 CO 吸附的空前高选择性,可用于 CO/H2、CO/N2 和 CO/CH4 分离以及在典型强吸附气体(如 CO2 和乙烯)上的优先 CO 吸附。虽然吸附诱导的自旋状态转变在分子化学中是众所周知的,特别是对于 CO,但据我们所知,这是首次在适合气体分离过程的多孔材料中观察到这种行为。这种效应可能会扩展到涉及其他π-酸的选择性分离。