Suppr超能文献

不断演变的遗传结构与希尔-罗伯逊干涉相互作用以决定有性生殖的益处。

An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.

作者信息

Whitlock Alexander O B, Peck Kayla M, Azevedo Ricardo B R, Burch Christina L

机构信息

Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3820.

Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3820.

出版信息

Genetics. 2016 Jun;203(2):923-36. doi: 10.1534/genetics.116.186916. Epub 2016 Apr 20.

Abstract

Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill-Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill-Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex-equilibrium mean fitness of sexual populations exceeded that of asexual populations-that did not depend on population size. We also observed a short-term advantage of sex-sexual modifier mutations readily invaded asexual populations-that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate ([Formula: see text]) and recombination load ([Formula: see text]). These differences resulted from a combination of selection to minimize [Formula: see text] which is experienced only by sexuals, and Hill-Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill-Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill-Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce [Formula: see text].

摘要

性别在自然界中无处不在,但其益处的本质仍存在争议。先前的研究表明,性别的一个主要优势在于它能够消除连锁突变选择之间的干扰,这一现象被称为希尔 - 罗伯逊干扰。然而,这些研究可能忽略了有性生殖的重要优势和劣势,因为它们没有考虑突变效应和相互作用(即遗传结构)的分布演变。在这里,我们通过模拟人工基因网络群体中的进化,研究希尔 - 罗伯逊干扰如何与不断演变的遗传结构相互作用,从而影响性别的进化起源和维持。我们观察到性别具有长期优势——有性群体的平衡平均适应度超过无性群体——这并不依赖于种群大小。我们还观察到性别具有短期优势——有性修饰突变很容易侵入无性群体——这种优势随着种群大小增加,正如先前研究所观察到的那样。我们表明,性别的长期和短期优势均由有性和无性群体在遗传结构的两个属性的进化动态方面的差异所决定:有害突变率([公式:见原文])和重组负荷([公式:见原文])。这些差异是由选择的组合导致的,选择的目的是最小化[公式:见原文](这仅发生在有性生殖中)以及主要发生在无性生殖中的希尔 - 罗伯逊干扰。与先前的研究不同,在先前的研究中希尔 - 罗伯逊干扰仅对性别的适应度优势有直接影响,而在我们的模拟中,希尔 - 罗伯逊干扰的影响还通过对选择降低[公式:见原文]的效率的间接影响来介导。

相似文献

1
An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.
Genetics. 2016 Jun;203(2):923-36. doi: 10.1534/genetics.116.186916. Epub 2016 Apr 20.
2
Population structure promotes the evolution of costly sex in artificial gene networks.
Evolution. 2019 Jun;73(6):1089-1100. doi: 10.1111/evo.13733. Epub 2019 Apr 29.
3
Genetic architecture and the evolution of sex.
J Hered. 2010 Mar-Apr;101 Suppl 1:S142-57. doi: 10.1093/jhered/esq013.
4
Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
Theory Biosci. 2009 Nov;128(4):249-85. doi: 10.1007/s12064-009-0077-9. Epub 2009 Nov 10.
5
7
Rate of adaptation in sexuals and asexuals: a solvable model of the Fisher-Muller effect.
Genetics. 2013 Nov;195(3):941-55. doi: 10.1534/genetics.113.155135. Epub 2013 Aug 26.
8
Epistasis, pleiotropy, and the mutation load in sexual and asexual populations.
Evolution. 2014 Jan;68(1):137-49. doi: 10.1111/evo.12232. Epub 2013 Sep 9.
9
A simple expression for the strength of selection on recombination generated by interference among mutations.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2022805118.
10
Sex speeds adaptation by altering the dynamics of molecular evolution.
Nature. 2016 Mar 10;531(7593):233-6. doi: 10.1038/nature17143. Epub 2016 Feb 24.

引用本文的文献

1
Genetic drift promotes and recombination hinders speciation on holey fitness landscapes.
PLoS Genet. 2024 Jan 22;20(1):e1011126. doi: 10.1371/journal.pgen.1011126. eCollection 2024 Jan.
2
The advantage of sex: Reinserting fluctuating selection in the pluralist approach.
PLoS One. 2022 Aug 2;17(8):e0272134. doi: 10.1371/journal.pone.0272134. eCollection 2022.
3
Mitonuclear Mismatch is Associated With Increased Male Frequency, Outcrossing, and Male Sperm Size in Experimentally-Evolved .
Front Genet. 2022 Mar 11;13:742272. doi: 10.3389/fgene.2022.742272. eCollection 2022.
4
Using phenotypic plasticity to understand the structure and evolution of the genotype-phenotype map.
Genetica. 2022 Aug;150(3-4):209-221. doi: 10.1007/s10709-021-00135-5. Epub 2021 Oct 6.
5
Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster.
Heredity (Edinb). 2021 Sep;127(3):278-287. doi: 10.1038/s41437-021-00449-2. Epub 2021 Jun 23.
6
The evolutionary advantage of fitness-dependent recombination in diploids: A deterministic mutation-selection balance model.
Ecol Evol. 2020 Jan 27;10(4):2074-2084. doi: 10.1002/ece3.6040. eCollection 2020 Feb.
7
Recombination drives the evolution of mutational robustness.
Curr Opin Syst Biol. 2019 Feb;13:142-149. doi: 10.1016/j.coisb.2018.12.003. Epub 2019 Jan 2.
8
Sex and Mitonuclear Adaptation in Experimental Populations.
Genetics. 2019 Mar;211(3):1045-1058. doi: 10.1534/genetics.119.301935. Epub 2019 Jan 22.
9
Synergy from reproductive division of labor and genetic complexity drive the evolution of sex.
J Biol Phys. 2018 Sep;44(3):317-329. doi: 10.1007/s10867-018-9485-8. Epub 2018 Apr 16.
10
Sign of selection on mutation rate modifiers depends on population size.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):3422-3427. doi: 10.1073/pnas.1715996115. Epub 2018 Mar 12.

本文引用的文献

1
DOES EVOLUTIONARY PLASTICITY EVOLVE?
Evolution. 1996 Jun;50(3):1008-1023. doi: 10.1111/j.1558-5646.1996.tb02342.x.
2
Evolution in changing environments: modifiers of mutation, recombination, and migration.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17935-40. doi: 10.1073/pnas.1417664111. Epub 2014 Nov 26.
3
Stability depends on positive autoregulation in Boolean gene regulatory networks.
PLoS Comput Biol. 2014 Nov 6;10(11):e1003916. doi: 10.1371/journal.pcbi.1003916. eCollection 2014 Nov.
4
Multidimensional epistasis and the transitory advantage of sex.
PLoS Comput Biol. 2014 Sep 18;10(9):e1003836. doi: 10.1371/journal.pcbi.1003836. eCollection 2014 Sep.
5
The maintenance of obligate sex in finite, structured populations subject to recurrent beneficial and deleterious mutation.
Evolution. 2012 Dec;66(12):3658-69. doi: 10.1111/j.1558-5646.2012.01733.x. Epub 2012 Jul 25.
6
Recent advances in understanding of the evolution and maintenance of sex.
Trends Ecol Evol. 1996 Feb;11(2):46-52. doi: 10.1016/0169-5347(96)81041-x.
7
Genetic architecture and the evolution of sex.
J Hered. 2010 Mar-Apr;101 Suppl 1:S142-57. doi: 10.1093/jhered/esq013.
8
The role of advantageous mutations in enhancing the evolution of a recombination modifier.
Genetics. 2010 Apr;184(4):1153-64. doi: 10.1534/genetics.109.112920. Epub 2010 Feb 5.
9
Effects of recombination on complex regulatory circuits.
Genetics. 2009 Oct;183(2):673-84, 1SI-8SI. doi: 10.1534/genetics.109.104174. Epub 2009 Aug 3.
10
Diploidy, population structure, and the evolution of recombination.
Am Nat. 2009 Jul;174 Suppl 1:S79-94. doi: 10.1086/599083.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验