Suppr超能文献

药物不良事件中性别差异的不良事件报告系统分析

Systematic Analysis of Adverse Event Reports for Sex Differences in Adverse Drug Events.

作者信息

Yu Yue, Chen Jun, Li Dingcheng, Wang Liwei, Wang Wei, Liu Hongfang

机构信息

Department of Medical Informatics, School of Public Health, Jilin University, Changchun, Jilin 130021, China.

Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55901, USA.

出版信息

Sci Rep. 2016 Apr 22;6:24955. doi: 10.1038/srep24955.

Abstract

Increasing evidence has shown that sex differences exist in Adverse Drug Events (ADEs). Identifying those sex differences in ADEs could reduce the experience of ADEs for patients and could be conducive to the development of personalized medicine. In this study, we analyzed a normalized US Food and Drug Administration Adverse Event Reporting System (FAERS). Chi-squared test was conducted to discover which treatment regimens or drugs had sex differences in adverse events. Moreover, reporting odds ratio (ROR) and P value were calculated to quantify the signals of sex differences for specific drug-event combinations. Logistic regression was applied to remove the confounding effect from the baseline sex difference of the events. We detected among 668 drugs of the most frequent 20 treatment regimens in the United States, 307 drugs have sex differences in ADEs. In addition, we identified 736 unique drug-event combinations with significant sex differences. After removing the confounding effect from the baseline sex difference of the events, there are 266 combinations remained. Drug labels or previous studies verified some of them while others warrant further investigation.

摘要

越来越多的证据表明,药物不良事件(ADEs)存在性别差异。识别这些ADEs中的性别差异可以减少患者发生ADEs的情况,并有助于个性化医疗的发展。在本研究中,我们分析了美国食品药品监督管理局不良事件报告系统(FAERS)的标准化数据。进行卡方检验以发现哪些治疗方案或药物在不良事件方面存在性别差异。此外,计算报告比值比(ROR)和P值以量化特定药物 - 事件组合的性别差异信号。应用逻辑回归来消除事件基线性别差异的混杂效应。我们在美国最常用的20种治疗方案的668种药物中检测到,有307种药物在ADEs方面存在性别差异。此外,我们识别出736种具有显著性别差异的独特药物 - 事件组合。在消除事件基线性别差异的混杂效应后,仍有266种组合。药物标签或先前的研究证实了其中一些,而其他的则需要进一步研究。

相似文献

2
Empirical estimation of under-reporting in the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS).
Expert Opin Drug Saf. 2017 Jul;16(7):761-767. doi: 10.1080/14740338.2017.1323867. Epub 2017 May 9.
5
Triptans and serious adverse vascular events: data mining of the FDA Adverse Event Reporting System database.
Cephalalgia. 2014 Jan;34(1):5-13. doi: 10.1177/0333102413499649. Epub 2013 Aug 6.
6
Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting data.
J Biomed Inform. 2016 Apr;60:294-308. doi: 10.1016/j.jbi.2016.02.009. Epub 2016 Feb 20.
7
Geriatrics on beers criteria medications at risk of adverse drug events using real-world data.
Int J Med Inform. 2021 Oct;154:104542. doi: 10.1016/j.ijmedinf.2021.104542. Epub 2021 Jul 22.
8
Risk factors for hospital admissions associated with adverse drug events.
Pharmacotherapy. 2013 Aug;33(8):827-37. doi: 10.1002/phar.1287. Epub 2013 May 17.
9
Cardiotoxicity in targeted therapy for breast cancer: A study of the FDA adverse event reporting system (FAERS).
J Oncol Pharm Pract. 2017 Mar;23(2):93-102. doi: 10.1177/1078155215621150. Epub 2016 Jul 9.
10
Sex differences in text-mined possible adverse drug events associated with drugs for psychosis.
J Psychopharmacol. 2020 May;34(5):532-539. doi: 10.1177/0269881120903466. Epub 2020 Feb 12.

引用本文的文献

2
Analysis of sex-differential gene expression on the target of approved drug.
Sci Rep. 2025 Jul 24;15(1):26989. doi: 10.1038/s41598-025-12342-7.
5
Metabolic Messengers: oestradiol.
Nat Metab. 2025 Jun;7(6):1114-1122. doi: 10.1038/s42255-025-01317-7. Epub 2025 Jun 24.
7
Pain in women: bridging the gender pain gap.
Pain Rep. 2025 May 20;10(3):e1276. doi: 10.1097/PR9.0000000000001276. eCollection 2025 Jun.
9
A Real-world Pharmacovigilance Study Of FDA Adverse Event Reporting System (FAERS) Events For Gender Of Voriconazole Drugs.
Drug Res (Stuttg). 2025 Jul;75(6):218-224. doi: 10.1055/a-2575-1530. Epub 2025 Apr 28.
10
Characteristics of second primary malignancies following bispecific antibodies therapy.
J Immunother Cancer. 2025 Apr 5;13(4):e011200. doi: 10.1136/jitc-2024-011200.

本文引用的文献

1
Utilizing social media data for pharmacovigilance: A review.
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.
2
Cutaneous adverse drug reactions in the elderly: a retrospective analysis in Thailand.
Drugs Aging. 2014 Nov;31(11):815-24. doi: 10.1007/s40266-014-0209-x.
3
Standardizing adverse drug event reporting data.
J Biomed Semantics. 2014 Aug 12;5:36. doi: 10.1186/2041-1480-5-36. eCollection 2014.
5
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation.
Pharmacol Ther. 2013 Apr;138(1):103-41. doi: 10.1016/j.pharmthera.2012.12.007. Epub 2013 Jan 16.
6
Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease.
World J Gastroenterol. 2012 Dec 21;18(47):6967-73. doi: 10.3748/wjg.v18.i47.6967.
7
Tigecycline-related pancreatitis: a review of spontaneous adverse event reports.
Pharmacotherapy. 2013 Jan;33(1):63-8. doi: 10.1002/phar.1159.
8
Sex and gender differences in clinical medicine.
Handb Exp Pharmacol. 2012(214):3-22. doi: 10.1007/978-3-642-30726-3_1.
9
Novel data-mining methodologies for adverse drug event discovery and analysis.
Clin Pharmacol Ther. 2012 Jun;91(6):1010-21. doi: 10.1038/clpt.2012.50.
10
Sex differences in cardiovascular drug-induced adverse reactions causing hospital admissions.
Br J Clin Pharmacol. 2012 Dec;74(6):1045-52. doi: 10.1111/j.1365-2125.2012.04310.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验