Halder Swagata, Surolia Avadhesha, Mukhopadhyay Chaitali
Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, India.
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.
Carbohydr Res. 2016 Jun 16;428:8-17. doi: 10.1016/j.carres.2016.04.009. Epub 2016 Apr 12.
The legume lectins are widely used as a model system for studying protein-carbohydrate and protein-protein interactions. They exhibit a fascinating quaternary structure variation. Recently, it has become clear that lectins exist as oligomers. Soybean agglutinin is a tetrameric legume lectin, each of whose subunits are glycosylated. In the present study we explore the main origin for the stability of soybean agglutinin dimer. In order to understand the role of glycosylation on the dimeric interface, we have carried out normal (298K), high temperatures (380K, 500K) long explicit solvent molecular dynamics (MD) simulations and compared the structural and conformational changes between the glycosylated and non-glycosylated dimers. The study reveals that the high degree of stability at normal temperature is mostly contributed by interfacial ionic interactions (~200 kcal/mol) between polar residues like Lys, Arg, Asp, Thr, Ser, Asn and Gln (62%). It maintains its overall folded conformation due to high subunit interactions at the non-canonical interface. Mainly five important hydrogen bonds between CO of one β sheet of one subunit with the N-H of other β strand of the other subunit help to maintain the structural integrity. Ten inter subunit salt-bridge interactions between Arg 185-Asṕ192, Lys 163-Asṕ169, Asp 169-Lyś 163 and Asp 192-Arǵ 185 at non-canonical interface appear to be important to maintain the three dimensional structure of SBA dimer. Moreover, our simulation results revealed that increase in vibrational entropy could decrease the free energy and contribute to the glycan-induced stabilization by ~45 kcal/mol at normal temperature.
豆科植物凝集素被广泛用作研究蛋白质 - 碳水化合物和蛋白质 - 蛋白质相互作用的模型系统。它们呈现出迷人的四级结构变化。最近,已经明确凝集素以寡聚体形式存在。大豆凝集素是一种四聚体豆科植物凝集素,其每个亚基都进行了糖基化修饰。在本研究中,我们探究了大豆凝集素二聚体稳定性的主要来源。为了理解糖基化在二聚体界面上的作用,我们进行了常规(298K)、高温(380K、500K)的长时间显式溶剂分子动力学(MD)模拟,并比较了糖基化和非糖基化二聚体之间的结构和构象变化。研究表明,常温下的高度稳定性主要由极性残基(如赖氨酸、精氨酸、天冬氨酸、苏氨酸、丝氨酸、天冬酰胺和谷氨酰胺)之间的界面离子相互作用(约200千卡/摩尔)贡献(62%)。由于在非典型界面处的高亚基相互作用,它保持了整体折叠构象。一个亚基的一个β折叠的羰基与另一个亚基的另一个β链的N - H之间主要有五个重要的氢键,有助于维持结构完整性。在非典型界面处,精氨酸185 - 天冬氨酸192、赖氨酸163 - 天冬氨酸169、天冬氨酸169 - 赖氨酸163和天冬氨酸192 - 精氨酸185之间的十个亚基间盐桥相互作用似乎对维持SBA二聚体的三维结构很重要。此外,我们的模拟结果表明,振动熵的增加可以降低自由能,并在常温下对聚糖诱导的稳定作用贡献约45千卡/摩尔。