Pomp S, Kuhness D, Barcaro G, Sementa L, Mankad V, Fortunelli A, Sterrer M, Netzer F P, Surnev S
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz , A-8010 Graz, Austria.
CNR-ICCOM and IPCF, Consiglio Nazionale delle Ricerche, I-56124 Pisa, Italy.
J Phys Chem C Nanomater Interfaces. 2016 Apr 14;120(14):7629-7638. doi: 10.1021/acs.jpcc.6b01086. Epub 2016 Mar 24.
The exceptional physical properties of graphene have sparked tremendous interests toward two-dimensional (2D) materials with honeycomb structure. We report here the successful fabrication of 2D iron tungstate (FeWO ) layers with honeycomb geometry on a Pt(111) surface, using the solid-state reaction of (WO) clusters with a FeO(111) monolayer on Pt(111). The formation process and the atomic structure of two commensurate FeWO phases, with (2 × 2) and (6 × 6) periodicities, have been characterized experimentally by combination of scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) and understood theoretically by density functional theory (DFT) modeling. The thermodynamically most stable (2 × 2) phase has a formal FeWO stoichiometry and corresponds to a buckled Fe/W layer arranged in a honeycomb lattice, terminated by oxygen atoms in Fe-W bridging positions. This 2D FeWO layer has a novel structure and stoichiometry and has no analogues to known bulk iron tungstate phases. It is theoretically predicted to exhibit a ferromagnetic electronic ground state with a Curie temperature of 95 K, as opposed to the antiferromagnetic behavior of bulk FeWO materials.
石墨烯卓越的物理性质引发了人们对具有蜂窝状结构的二维(2D)材料的极大兴趣。我们在此报告,利用(WO)团簇与Pt(111)表面上的FeO(111)单层的固态反应,成功在Pt(111)表面制备出具有蜂窝几何结构的二维钨酸铁(FeWO₄)层。通过扫描隧道显微镜(STM)、低能电子衍射(LEED)、X射线光电子能谱(XPS)和程序升温脱附(TPD)相结合的方法,对具有(2×2)和(6×6)周期性的两种同配FeWO₄相的形成过程和原子结构进行了实验表征,并通过密度泛函理论(DFT)建模从理论上进行了理解。热力学上最稳定的(2×2)相具有形式上的FeWO₄化学计量比,对应于排列在蜂窝晶格中的弯曲Fe/W层,由Fe-W桥接位置的氧原子终止。这种二维FeWO₄层具有新颖的结构和化学计量比,与已知体相钨酸铁相没有类似物。理论预测它将表现出居里温度为95 K的铁磁电子基态,这与体相FeWO₄材料的反铁磁行为相反。