Das Mukherjee Dipanwita, Kumar N Maruthi, Tantak Mukund P, Das Amlan, Ganguli Arnab, Datta Satabdi, Kumar Dalip, Chakrabarti Gopal
Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta , 35 Ballygunge Circular Road, Kolkata, WB 700 019, India.
Department of Chemistry, Birla Institute of Technology and Science , Pilani, Rajasthan 333 031, India.
Biochemistry. 2016 May 31;55(21):3020-35. doi: 10.1021/acs.biochem.5b01127. Epub 2016 May 19.
The biological significance of microtubules makes them a validated target of cancer therapy. In this study, we have utilized indole, an important pharmacological scaffold, to synthesize novel bis(indolyl)-hydrazide-hydrazone derivatives (NMK-BH compounds) and recognized NMK-BH3 as the most effective one in inhibiting A549 cell proliferation and assembly of tissue-purified tubulin. Cell viability experiments showed that NMK-BH3 inhibited proliferation of human lung adenocarcinoma (A549) cells, normal human lung fibroblasts (WI38) and peripheral blood mononuclear cells (PBMC) with IC50 values of ∼2, 48.5, and 62 μM, respectively. Thus, the relatively high cytotoxicity of NMK-BH3 toward lung carcinoma (A549) cells over normal lung fibroblasts (WI38) and PBMC confers a therapeutic advantage of reduced host toxicity. Flow cytometry, Western blot, and immunofluorescence studies in the A549 cell line revealed that NMK-BH3 induced G2/M arrest, mitochondrial depolarization, and apoptosis by depolymerizing the cellular interphase and spindle microtubules. Consistent with these observations, study in cell free system revealed that NMK-BH3 inhibited the microtubule assembly with an IC50 value of ∼7.5 μM. The tubulin-ligand interaction study using fluorescence spectroscopy indicated that NMK-BH3 exhibited strong and specific tubulin binding with a dissociation constant of ∼1.4 μM at a single site, very close to colchicine site, on β-tubulin. Collectively, these findings explore the cytotoxic potential of NMK-BH3 by targeting the microtubules and inspire its development as a potential candidate for lung cancer chemotherapy.
微管的生物学意义使其成为癌症治疗的一个经过验证的靶点。在本研究中,我们利用重要的药理学支架吲哚合成了新型双(吲哚基)-酰肼腙衍生物(NMK-BH化合物),并确认NMK-BH3是抑制A549细胞增殖和组织纯化微管蛋白组装最有效的化合物。细胞活力实验表明,NMK-BH3抑制人肺腺癌(A549)细胞、正常人肺成纤维细胞(WI38)和外周血单核细胞(PBMC)的增殖,IC50值分别约为2、48.5和62 μM。因此,与正常肺成纤维细胞(WI38)和PBMC相比,NMK-BH3对肺癌(A549)细胞具有相对较高的细胞毒性,这赋予了降低宿主毒性的治疗优势。对A549细胞系进行的流式细胞术、蛋白质免疫印迹和免疫荧光研究表明,NMK-BH3通过解聚细胞间期和纺锤体微管诱导G2/M期阻滞、线粒体去极化和细胞凋亡。与这些观察结果一致,在无细胞系统中的研究表明,NMK-BH3抑制微管组装,IC50值约为7.5 μM。使用荧光光谱进行的微管蛋白-配体相互作用研究表明,NMK-BH3在β-微管蛋白上一个非常接近秋水仙碱结合位点的单一位点表现出与微管蛋白强烈且特异性的结合,解离常数约为1.4 μM。总的来说,这些发现通过靶向微管探索了NMK-BH3的细胞毒性潜力,并激发了其作为肺癌化疗潜在候选药物的开发。