Lewandowska Aleksandra M, Biermann Antje, Borer Elizabeth T, Cebrián-Piqueras Miguel A, Declerck Steven A J, De Meester Luc, Van Donk Ellen, Gamfeldt Lars, Gruner Daniel S, Hagenah Nicole, Harpole W Stanley, Kirkman Kevin P, Klausmeier Christopher A, Kleyer Michael, Knops Johannes M H, Lemmens Pieter, Lind Eric M, Litchman Elena, Mantilla-Contreras Jasmin, Martens Koen, Meier Sandra, Minden Vanessa, Moore Joslin L, Venterink Harry Olde, Seabloom Eric W, Sommer Ulrich, Striebel Maren, Trenkamp Anastasia, Trinogga Juliane, Urabe Jotaro, Vyverman Wim, Van de Waal Dedmer B, Widdicombe Claire E, Hillebrand Helmut
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany.
Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694). doi: 10.1098/rstb.2015.0283.
Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.
众多研究表明,物种丰富度的增加会提高生态系统生产力。这种效应通常归因于在具有更多竞争物种的群落中对多种资源更有效的分配,这表明资源供应和化学计量在生物多样性与生态系统功能关系中的作用。在此,我们将生态化学计量理论与生物多样性 - 生态系统功能框架相结合,以了解资源利用如何转化为初级生产。我们应用结构方程模型来定义与可用资源相关的多样性 - 生产力关系模式。荟萃分析用于总结从水生生态系统到草原和森林等各种生态系统类型的研究结果。正如所假设的那样,资源供应提高了实际生产力和丰富度,但我们发现生态系统和研究类型之间存在显著差异。丰富度的增加与生产力的提高相关,尽管在实验中未观察到这种效应。更均匀的群落生产力较低,这表明生物量生产通常由少数优势物种维持,而优势度的降低通常会降低生态系统生产力。这种综合了各种生态系统和地理区域的观测和实验研究的分析,揭示了生物多样性与功能关系中的共同模式和差异,并增强了对生态系统生产力变化的机制理解。