Lee Young H, Wang May-Yun, Yu Xin-Xin, Unger Roger H
Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
Diabetologia. 2016 Jul;59(7):1372-1375. doi: 10.1007/s00125-016-3965-9. Epub 2016 Apr 26.
Glucagon plays important roles in normal glucose homeostasis and in metabolic abnormalities, particularly diabetes. Glucagon excess, rather than insulin deficiency, is essential for the development of diabetes for several reasons. Glucagon increases hepatic glucose and ketone production, the catabolic features of insulin deficiency. Hyperglucagonaemia is present in every form of diabetes. Beta cell destruction in glucagon receptor null mice does not cause diabetes unless mice are administered adenovirus encoding the glucagon receptor. In rodent studies the glucagon suppressors leptin and glucagon receptor antibody suppressed all catabolic manifestations of diabetes during insulin deficiency. Insulin prevents hyperglycaemia; however, insulin monotherapy cannot cure diabetes such that non-diabetic glucose homeostasis is achieved. Glucose-responsive beta cells normally regulate alpha cells, and diminished insulin action on alpha cells will favour hypersecretion of glucagon by the alpha cells, thus altering the insulin:glucagon ratio. Treating diabetes by suppression of glucagon, with leptin or antibody against the glucagon receptor, normalised glucose level (without glycaemic volatility) and HbA1c. Glucagon suppression also improved insulin sensitivity and glucose tolerance. If these results can be translated to humans, suppression of glucagon action will represent a step forward in the treatment of diabetes. This review summarises a presentation given at the 'Novel data on glucagon' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Mona Abraham and Tony Lam, DOI: 10.1007/s00125-016-3950-3 , and by Russell Miller and Morris Birnbaum, DOI: 10.1007/s00125-016-3955-y ) and an overview by the Session Chair, Isabel Valverde (DOI: 10.1007/s00125-016-3946-z ).
胰高血糖素在正常血糖稳态及代谢异常(尤其是糖尿病)中发挥着重要作用。出于多种原因,糖尿病的发生中,胰高血糖素过量而非胰岛素缺乏至关重要。胰高血糖素会增加肝脏葡萄糖和酮体生成,这是胰岛素缺乏的分解代谢特征。每种糖尿病类型中均存在高胰高血糖素血症。在胰高血糖素受体缺失小鼠中,β细胞破坏不会导致糖尿病,除非给小鼠注射编码胰高血糖素受体的腺病毒。在啮齿动物研究中,胰高血糖素抑制剂瘦素和胰高血糖素受体抗体可抑制胰岛素缺乏期间糖尿病的所有分解代谢表现。胰岛素可预防高血糖;然而,胰岛素单一疗法无法治愈糖尿病并实现非糖尿病状态的血糖稳态。葡萄糖反应性β细胞通常调节α细胞,胰岛素对α细胞作用减弱会促使α细胞胰高血糖素分泌过多,从而改变胰岛素与胰高血糖素的比例。通过用瘦素或抗胰高血糖素受体抗体抑制胰高血糖素来治疗糖尿病,可使血糖水平正常化(无血糖波动)并降低糖化血红蛋白。抑制胰高血糖素还可改善胰岛素敏感性和葡萄糖耐量。如果这些结果能够转化应用于人类,抑制胰高血糖素作用将代表糖尿病治疗向前迈进了一步。本综述总结了在欧洲糖尿病研究协会(EASD)2015年年会“胰高血糖素新数据”研讨会上的一次演讲内容。该研讨会还有另外两篇关于此主题的综述(作者分别为莫娜·亚伯拉罕和托尼·林,DOI:10.1007/s00125 - 016 - 3950 - 3;以及拉塞尔·米勒和莫里斯·伯恩鲍姆,DOI:10.1007/s00125 - 016 - 3955 - y),以及会议主席伊莎贝尔·瓦尔韦德的综述(DOI:10.1007/s00125 - 016 - 3946 - z)。