Zimmermann Urs, Smallenburg Frank, Löwen Hartmut
Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
J Phys Condens Matter. 2016 Jun 22;28(24):244019. doi: 10.1088/0953-8984/28/24/244019. Epub 2016 Apr 26.
Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.
利用动态密度泛函理论和粒子分辨布朗动力学模拟,我们研究了二维胶体固体和流体在带有收缩段的线性通道中驱动下的流动。流动由作用于所有胶体的恒定外力产生。初始构型在无流动情况下达到平衡,然后瞬间开启外力。开始流动后,我们观察到四种不同的情况:完全阻塞、单调衰减至恒定粒子通量(流体的典型情况)、粒子通量中的阻尼振荡行为以及流动中的长寿命启停行为(固体的典型情况)。动态密度泛函理论描述了所有这四种情况,但预测流动中存在无限长的无阻尼振荡,而在模拟中这些振荡总是会被阻尼。我们将潜在的启停流动机制归因于流动固体上的对称条件。我们的预测可在通过结构化微通道驱动的磁性胶体单层的实空间实验中得到验证,并且可用于控制微流体中的流动通量。