El Gennady A, Smyth Noel F
Department of Mathematical Sciences , Loughborough University , Loughborough LE11 3TU, UK.
School of Mathematics , University of Edinburgh , Edinburgh EH9 3FD, UK.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150633. doi: 10.1098/rspa.2015.0633.
We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger (NLS) equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing NLS equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the Wentzel-Kramers-Brillouin approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg-de Vries equation with the fifth-order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations.
我们考虑用于描述相干光束在向列型液晶中传播的方程组的阶跃黎曼问题,该方程组是描述许多不同物理应用中非线性波传播的一般系统。虽然 governing 光束的方程属于散焦非线性薛定谔(NLS)方程类型,但由该初始条件产生的色散激波(DSW)与散焦 NLS 方程的标准 DSW 解有很大差异。特别是,发现 DSW 具有正极性并产生在其前方传播的共振辐射。值得注意的是,DSW 的领先孤子的速度由经典激波速度决定。使用温策尔 - 克拉默斯 - 布里渊近似获得辐射波列的解。结果表明,对于足够小的初始跃变,向列型 DSW 渐近地由具有五阶色散的科特韦格 - 德弗里斯方程支配,这明确显示了在 DSW 前方产生辐射的共振。所构建的渐近理论与直接数值模拟结果显示出良好的一致性。