Suppr超能文献

非局部光学介质中的辐射色散冲击波。

Radiating dispersive shock waves in non-local optical media.

作者信息

El Gennady A, Smyth Noel F

机构信息

Department of Mathematical Sciences , Loughborough University , Loughborough LE11 3TU, UK.

School of Mathematics , University of Edinburgh , Edinburgh EH9 3FD, UK.

出版信息

Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150633. doi: 10.1098/rspa.2015.0633.

Abstract

We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applications. While the equation governing the light beam is of defocusing nonlinear Schrödinger (NLS) equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing NLS equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the Wentzel-Kramers-Brillouin approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg-de Vries equation with the fifth-order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations.

摘要

我们考虑用于描述相干光束在向列型液晶中传播的方程组的阶跃黎曼问题,该方程组是描述许多不同物理应用中非线性波传播的一般系统。虽然 governing 光束的方程属于散焦非线性薛定谔(NLS)方程类型,但由该初始条件产生的色散激波(DSW)与散焦 NLS 方程的标准 DSW 解有很大差异。特别是,发现 DSW 具有正极性并产生在其前方传播的共振辐射。值得注意的是,DSW 的领先孤子的速度由经典激波速度决定。使用温策尔 - 克拉默斯 - 布里渊近似获得辐射波列的解。结果表明,对于足够小的初始跃变,向列型 DSW 渐近地由具有五阶色散的科特韦格 - 德弗里斯方程支配,这明确显示了在 DSW 前方产生辐射的共振。所构建的渐近理论与直接数值模拟结果显示出良好的一致性。

相似文献

1
Radiating dispersive shock waves in non-local optical media.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150633. doi: 10.1098/rspa.2015.0633.
2
Undular bore theory for the Gardner equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036605. doi: 10.1103/PhysRevE.86.036605. Epub 2012 Sep 18.
3
Two-dimensional supersonic nonlinear Schrödinger flow past an extended obstacle.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):046317. doi: 10.1103/PhysRevE.80.046317. Epub 2009 Oct 26.
4
Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films.
Phys Rev Lett. 2017 Jul 14;119(2):024101. doi: 10.1103/PhysRevLett.119.024101.
5
Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2B):036609. doi: 10.1103/PhysRevE.66.036609. Epub 2002 Sep 20.
6
Dispersive shock wave interactions and asymptotics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022906. doi: 10.1103/PhysRevE.87.022906. Epub 2013 Feb 13.
7
Reorientational versus Kerr dark and gray solitary waves using modulation theory.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066602. doi: 10.1103/PhysRevE.84.066602. Epub 2011 Dec 9.
8
Dispersive shock wave theory for nonintegrable equations.
Phys Rev E. 2019 Jan;99(1-1):012203. doi: 10.1103/PhysRevE.99.012203.
9
Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation.
Phys Rev E. 2017 Nov;96(5-1):052213. doi: 10.1103/PhysRevE.96.052213. Epub 2017 Nov 20.
10
Soliton gas in bidirectional dispersive hydrodynamics.
Phys Rev E. 2021 Apr;103(4-1):042201. doi: 10.1103/PhysRevE.103.042201.

本文引用的文献

2
Radiative effects driven by shock waves in cavity-less four-wave mixing combs.
Opt Lett. 2014 Oct 1;39(19):5760-3. doi: 10.1364/OL.39.005760.
3
Dispersive radiation induced by shock waves in passive resonators.
Opt Lett. 2014 Oct 1;39(19):5626-9. doi: 10.1364/OL.39.005626.
4
Dispersive wave emission from wave breaking.
Opt Lett. 2013 Oct 1;38(19):3815-8. doi: 10.1364/OL.38.003815.
5
Generalized dispersive wave emission in nonlinear fiber optics.
Opt Lett. 2013 Jan 15;38(2):151-3. doi: 10.1364/OL.38.000151.
6
Dark nematicons.
Opt Lett. 2011 Apr 15;36(8):1356-8. doi: 10.1364/OL.36.001356.
7
Effect of third-order dispersion on dark solitons.
Opt Lett. 1996 Dec 15;21(24):1975-7. doi: 10.1364/ol.21.001975.
8
Dispersive shock waves in nonlinear arrays.
Phys Rev Lett. 2007 Nov 30;99(22):223901. doi: 10.1103/PhysRevLett.99.223901. Epub 2007 Nov 27.
9
Dispersive shock waves with nonlocal nonlinearity.
Opt Lett. 2007 Oct 15;32(20):2930-2. doi: 10.1364/ol.32.002930.
10
Shocks in nonlocal media.
Phys Rev Lett. 2007 Jul 27;99(4):043903. doi: 10.1103/PhysRevLett.99.043903. Epub 2007 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验