Suppr超能文献

评估旱地植被模型中空间格局序列的稳健性。

Assessing the robustness of spatial pattern sequences in a dryland vegetation model.

作者信息

Gowda Karna, Chen Yuxin, Iams Sarah, Silber Mary

机构信息

Department of Engineering Sciences and Applied Mathematics , Northwestern University , Evanston, IL 60208, USA.

Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge, MA 02138, USA.

出版信息

Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150893. doi: 10.1098/rspa.2015.0893.

Abstract

A particular sequence of patterns, 'gaps→labyrinth→spots', occurs with decreasing precipitation in previously reported numerical simulations of partial differential equation dryland vegetation models. These observations have led to the suggestion that this sequence of patterns can serve as an early indicator of desertification in some ecosystems. Because parameter values in the vegetation models can take on a range of plausible values, it is important to investigate whether the pattern sequence prediction is robust to variation. For a particular model, we find that a quantity calculated via bifurcation-theoretic analysis appears to serve as a proxy for the pattern sequences that occur in numerical simulations across a range of parameter values. We find in further analysis that the quantity takes on values consistent with the standard sequence in an ecologically relevant limit of the model parameter values. This suggests that the standard sequence is a robust prediction of the model, and we conclude by proposing a methodology for assessing the robustness of the standard sequence in other models and formulations.

摘要

在先前报道的偏微分方程旱地植被模型的数值模拟中,随着降水量的减少,会出现一种特定的模式序列,即“间隙→迷宫→斑点”。这些观测结果表明,这种模式序列可以作为某些生态系统荒漠化的早期指标。由于植被模型中的参数值可以取一系列合理的值,因此研究模式序列预测对变化的稳健性很重要。对于一个特定的模型,我们发现通过分岔理论分析计算出的一个量似乎可以作为一系列参数值下数值模拟中出现的模式序列的代理。我们在进一步分析中发现,在模型参数值的生态相关极限内,该量的值与标准序列一致。这表明标准序列是该模型的稳健预测,我们最后提出了一种方法,用于评估其他模型和公式中标准序列的稳健性。

相似文献

1
Assessing the robustness of spatial pattern sequences in a dryland vegetation model.
Proc Math Phys Eng Sci. 2016 Mar;472(2187):20150893. doi: 10.1098/rspa.2015.0893.
2
Desertification by front propagation?
J Theor Biol. 2017 Apr 7;418:27-35. doi: 10.1016/j.jtbi.2017.01.029. Epub 2017 Jan 20.
3
Transitions between patterned states in vegetation models for semiarid ecosystems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022701. doi: 10.1103/PhysRevE.89.022701. Epub 2014 Feb 3.
4
A topographic mechanism for arcing of dryland vegetation bands.
J R Soc Interface. 2018 Oct 10;15(147):20180508. doi: 10.1098/rsif.2018.0508.
5
Multistability of model and real dryland ecosystems through spatial self-organization.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11256-11261. doi: 10.1073/pnas.1804771115. Epub 2018 Oct 15.
6
Formation of localized states in dryland vegetation: Bifurcation structure and stability.
Phys Rev E. 2020 May;101(5-1):052214. doi: 10.1103/PhysRevE.101.052214.
7
Localised pattern formation in a model for dryland vegetation.
J Math Biol. 2016 Jul;73(1):63-90. doi: 10.1007/s00285-015-0937-5. Epub 2015 Oct 10.
8
Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation.
J Theor Biol. 2022 Mar 7;536:110997. doi: 10.1016/j.jtbi.2021.110997. Epub 2022 Jan 4.
9
A morphometric analysis of vegetation patterns in dryland ecosystems.
R Soc Open Sci. 2017 Feb 15;4(2):160443. doi: 10.1098/rsos.160443. eCollection 2017 Feb.

引用本文的文献

1
Bounded risk disposition explains Turing patterns and tipping points during spatial contagions.
R Soc Open Sci. 2024 Oct 2;11(10):240457. doi: 10.1098/rsos.240457. eCollection 2024 Oct.
2
Pattern blending enriches the diversity of animal colorations.
Sci Adv. 2020 Dec 2;6(49). doi: 10.1126/sciadv.abb9107. Print 2020 Dec.
3
An integrodifference model for vegetation patterns in semi-arid environments with seasonality.
J Math Biol. 2020 Sep;81(3):875-904. doi: 10.1007/s00285-020-01530-w. Epub 2020 Sep 4.
4
Population mobility induced phase separation in SIS epidemic and social dynamics.
Sci Rep. 2020 May 6;10(1):7646. doi: 10.1038/s41598-020-64183-1.
5
Stabilizing a homoclinic stripe.
Philos Trans A Math Phys Eng Sci. 2018 Nov 12;376(2135):20180110. doi: 10.1098/rsta.2018.0110.

本文引用的文献

1
Localised pattern formation in a model for dryland vegetation.
J Math Biol. 2016 Jul;73(1):63-90. doi: 10.1007/s00285-015-0937-5. Epub 2015 Oct 10.
2
Gradual regime shifts in fairy circles.
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12327-31. doi: 10.1073/pnas.1504289112. Epub 2015 Sep 11.
4
Using wavelength and slope to infer the historical origin of semiarid vegetation bands.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4202-7. doi: 10.1073/pnas.1420171112. Epub 2015 Mar 23.
5
Transitions between patterned states in vegetation models for semiarid ecosystems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022701. doi: 10.1103/PhysRevE.89.022701. Epub 2014 Feb 3.
6
Regime shifts in models of dryland vegetation.
Philos Trans A Math Phys Eng Sci. 2013 Nov 4;371(2004):20120358. doi: 10.1098/rsta.2012.0358. Print 2013.
7
Slowing down in spatially patterned ecosystems at the brink of collapse.
Am Nat. 2011 Jun;177(6):E153-66. doi: 10.1086/659945.
8
Early-warning signals for critical transitions.
Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.
9
Self-organization of vegetation in arid ecosystems.
Am Nat. 2002 Oct;160(4):524-30. doi: 10.1086/342078.
10
Self-organization and productivity in semi-arid ecosystems: implications of seasonality in rainfall.
J Theor Biol. 2007 Oct 7;248(3):490-500. doi: 10.1016/j.jtbi.2007.05.020. Epub 2007 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验