Suppr超能文献

用于关系抽取的集成树核支持向量机

Support Vector Machine with Ensemble Tree Kernel for Relation Extraction.

作者信息

Liu Xiaoyong, Fu Hui, Du Zhiguo

机构信息

Department of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, Guangdong 510665, China.

College of Mathematics and Informatics, South China Agricultural University, Guangzhou, Guangdong 510642, China.

出版信息

Comput Intell Neurosci. 2016;2016:8495754. doi: 10.1155/2016/8495754. Epub 2016 Mar 22.

Abstract

Relation extraction is one of the important research topics in the field of information extraction research. To solve the problem of semantic variation in traditional semisupervised relation extraction algorithm, this paper proposes a novel semisupervised relation extraction algorithm based on ensemble learning (LXRE). The new algorithm mainly uses two kinds of support vector machine classifiers based on tree kernel for integration and integrates the strategy of constrained extension seed set. The new algorithm can weaken the inaccuracy of relation extraction, which is caused by the phenomenon of semantic variation. The numerical experimental research based on two benchmark data sets (PropBank and AIMed) shows that the LXRE algorithm proposed in the paper is superior to other two common relation extraction methods in four evaluation indexes (Precision, Recall, F-measure, and Accuracy). It indicates that the new algorithm has good relation extraction ability compared with others.

摘要

关系抽取是信息抽取研究领域中的重要研究课题之一。为了解决传统半监督关系抽取算法中的语义变异问题,本文提出了一种基于集成学习的新型半监督关系抽取算法(LXRE)。新算法主要使用两种基于树核的支持向量机分类器进行集成,并融合了约束扩展种子集策略。新算法能够减弱由语义变异现象导致的关系抽取不准确问题。基于两个基准数据集(PropBank和AIMed)的数值实验研究表明,本文提出的LXRE算法在四个评估指标(精确率、召回率、F值和准确率)上优于其他两种常见的关系抽取方法。这表明新算法与其他算法相比具有良好的关系抽取能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5299/4826950/0097870f26ad/CIN2016-8495754.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验