Nizio K D, Perrault K A, Troobnikoff A N, Ueland M, Shoma S, Iredell J R, Middleton P G, Forbes S L
Centre for Forensic Science, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
J Breath Res. 2016 Apr 27;10(2):026008. doi: 10.1088/1752-7155/10/2/026008.
Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections.
慢性肺部感染是囊性纤维化(CF)患者发病和死亡的主要原因。由于这些感染具有多种微生物的特性,确定具体的致病细菌种类是诊断和治疗的关键步骤。目前的诊断程序耗时,而且在没有自行咳出痰液的情况下,还可能成本高昂、具有侵入性且令人不适。因此,需要开发一种能够快速、无创地诊断和监测早期细菌感染的方法。通过呼气测试进行实时原位诊断的未来愿景依赖于根据细菌的挥发性代谢产物来区分细菌。本概念验证研究的目的是调查是否可以根据一系列与CF相关的细菌种类(即铜绿假单胞菌、洋葱伯克霍尔德菌、流感嗜血杆菌、嗜麦芽窄食单胞菌、肺炎链球菌和米勒链球菌)的体外挥发性代谢组学图谱来进行区分。使用固相微萃取(SPME)收集顶空样品,采用全二维气相色谱-飞行时间质谱(GC×GC-TOFMS)进行分析,并使用主成分分析(PCA)进行评估,以评估数据的多变量结构。尽管使用这种方法无法有效区分所有六种细菌,但结果表明,特定的挥发性有机化合物(VOC)模式(而非单一的VOC生物标志物)的存在对于细菌种类鉴定是必要的。发现特定的VOC模式取决于细菌生长阶段(例如对数期与稳定期)和样品储存条件(例如在-18°C下短期与长期储存)。未来对与CF相关细菌和呼气冷凝液的研究将受益于本研究中提出的方法,并进一步促进用于早期检测细菌性肺部感染的诊断工具的开发。