Altmeyer Michaela, Jeschke Harald O, Hijano-Cubelos Oliver, Martins Cyril, Lechermann Frank, Koepernik Klaus, Santander-Syro Andrés F, Rozenberg Marcelo J, Valentí Roser, Gabay Marc
Institut für Theoretische Physik, Goethe-Universtät Frankfurt, 60438 Frankfurt am Main, Germany.
Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud, 91405 Orsay, France.
Phys Rev Lett. 2016 Apr 15;116(15):157203. doi: 10.1103/PhysRevLett.116.157203. Epub 2016 Apr 14.
Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements of the two-dimensional electronic states confined near the (001) surface of oxygen-deficient SrTiO_{3}, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ∼100 meV at the Γ point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.
受近期对缺氧SrTiO₃(001)表面附近二维电子态的自旋和角分辨光电子能谱(SARPES)测量结果的启发,我们通过对平板进行从头算密度泛函理论(DFT)计算来探索其自旋结构。相对论性非磁性DFT计算显示出具有几毫电子伏特分裂的类Rashba自旋缠绕,当考虑Ti离子上的表面磁性时,能带在Γ点处发生自旋分裂,能量差约为100毫电子伏特,这与SARPES的结果一致。虽然磁性倾向于抑制相对论性Rashba相互作用的影响,但在复杂的自旋纹理方面,其特征仍然清晰可见。此外,我们观察到一种原子特化现象,即两种类型的电子贡献:一种来自与氧空位相邻的Ti原子,这些Ti原子获得相当大的磁矩并主要产生带隙态;另一种来自远离氧空位的Ti原子的部分极化的t₂g巡游电子,它们形成二维电子系统,并负责Rashba自旋缠绕和费米面上的自旋分裂。