Suppr超能文献

蓝色荧光发色团中的激发态分子内质子转移引发双重发射。

Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.

作者信息

Wu Dan, Guo Wei-Wei, Liu Xiang-Yang, Cui Ganglong

机构信息

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.

出版信息

Chemphyschem. 2016 Aug 4;17(15):2340-7. doi: 10.1002/cphc.201600386. Epub 2016 May 11.

Abstract

Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra-slow excited-state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014, 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum-energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck-Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1 /S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1 /S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited-state deactivation pathways are responsible for the in-part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1 /S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.

摘要

与绿色荧光蛋白(GFP)发色团相比,最近合成的蓝色荧光蛋白(BFP)发色团变体呈现出引人入胜的光化学性质,例如双荧光发射、增强的荧光量子产率和超慢激发态分子内质子转移(ESIPT;《物理化学快报》,2014年,5卷,92页);然而,其光化学机制仍然难以捉摸。在此,我们采用CASSCF和CASPT2方法研究了截短的BFP发色团变体在S0和S1态的光化学机理。基于优化的极小值、锥形交叉点和最小能量路径(ESIPT、光异构化和失活),我们发现该体系从BFP发色团变体的弗兰克-康登点出发有两条竞争性的S1弛豫途径。一条是ESIPT路径,生成在实验中表现出大斯托克斯位移的S1互变异构体。生成的S1互变异构体可以进一步向附近的S1/S0锥形交叉点演化,然后跃迁到S0态。另一条是沿着中心双键旋转的光异构化路径。沿着这条路径,S1体系进入S1/S0锥形交叉点区域,最终跃迁到S0态。这两条能量上允许的S1激发态失活途径是荧光量子产率部分损失的原因。可观的S1 ESIPT势垒以及将S1互变异构体与S1/S0锥形交叉点分开的相当大的势垒使得这两个互变异构体在S1态建立了动力学平衡,从而导致双荧光发射。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验